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Nuclear symmetry energy from the Fermi-energy difference in nuclei
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The neutron-proton Fermi-energy difference and the correlation to nucleon separation energies for some magic
nuclei are investigated with the Skyrme energy density functionals and nuclear masses, with which the nuclear
symmetry energy at subsaturation densities is constrained from 54 Skyrme parameter sets. The extracted nuclear
symmetry energy at subsaturation density of 0.11 fm−3 is 26.2 ± 1.0 MeV with 1.5σ uncertainty. By further
combining the neutron-skin thickness of 208Pb, ten Skyrme forces with slope parameter of 28 � L � 65 are
selected for the description of the symmetry energy around saturation densities.
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I. INTRODUCTION

The nuclear symmetry energy, in particular its density
dependence, has received considerable attention in recent
years [1–12]. As one of the key properties of nuclear matter,
the nuclear symmetry energy probes the isospin part of nuclear
forces and intimately relates to the structure character of
drip-line nuclei and superheavy nuclei, the dynamical process
of nuclear reactions, and the behavior of neutron stars. To
explore the density dependence of the nuclear symmetry
energy from subsaturation to supersaturation densities, various
models and experimental observables have been proposed.
On the one hand, the constraints on the symmetry energy
are investigated from heavy-ion collisions [2,13,14]. Some
experimental data for the isospin-sensitive observables are
well reproduced by using certain forms of a density-dependent
symmetry energy in microscopic dynamics calculations, such
as in the improved quantum molecular dynamics [1,2] and
the isospin Boltzmann-Uehling-Uhlenbeck [4,5] calculations.
In these calculations, the temperature effect and the influence
of the isospin-independent terms of nuclear forces are self-
consistently involved. It is still difficult to clearly obtain the
information of nuclear symmetry energy at zero temperature
by removing the influence of the isospin-independent terms.

On the other hand, the symmetry energy is also constrained
from the properties of finite nuclei, such as the binding energies
[15–20], the neutron-skin thickness [8,21–24], and the pygmy
dipole resonance (PDR) [25,26]. By analyzing the more than
2000 measured masses of nuclei with the help of the liquid
drop formula, one can obtain the mass dependence of the
symmetry energy coefficients of finite nuclei [15,16,20] and
the nuclear symmetry energy at subsaturation densities [17,18]
based on the relation between the symmetry energy coefficients
of finite nuclei and the symmetry energy of infinite nuclear
matter [8]. The obtained symmetry energy at the saturation
density and its slope parameter [17] are generally close to
the results from the PDR [26] and heavy-ion collisions [1].
In addition, the symmetry energy is also constrained from
neutron star observations incorporating the microphysics of
both the stellar crust and core [9,27,28]. A relatively smaller

*wangning@gxnu.edu.cn

slope parameter of the symmetry energy at the saturation
density 43 < L < 52 MeV is obtained from the available
neutron star mass and radius measurements [9]. It is known
that the average density of a finite nucleus is smaller than the
saturation density due to the surface diffuseness. The obtained
information mainly describes the nuclear symmetry energy
at the subsaturation densities rather than the supersaturation
densities. The symmetry energies at the saturation and super-
saturation densities based on the extrapolation are still very
uncertain and more isospin-sensitive observations should be
proposed and investigated.

The density dependence of the symmetry energy is also
extensively studied with the Skyrme energy density functionals
[29–31]. The Hartree-Fock-Bogoliubov approach with the
Skyrme force BSk17 [30] can reproduce the 2149 mea-
sured masses with a rms deviation of 0.581 MeV, which is
comparable to the accuracy of the new finite-range droplet
model (FRDM2012) [19]. In the FRDM2012, it is found
that a slope parameter of the symmetry energy at normal
density L ≈ 70 MeV can give better results with a rms
deviation of 0.570 MeV. However, one should note that the
corresponding slope parameter is only L = 36 MeV from the
BSk17 parameter set which is much smaller than the result
of FRDM2012. It is therefore necessary to further investigate
the behavior of the symmetry energy at subsaturation densities
from the structures of finite nuclei.

In this work, we study the nuclear symmetry energy at
subsaturation densities from the Fermi energies of nuclei based
on various parametrizations of the Skyrme forces. The Skyrme
interaction, originally constructed for finite nuclei and nuclear
matter at saturation density, is a low-momentum expansion
of the effective two-body nucleon-nucleon (NN) interaction in
momentum space. Although all Skyrme forces are usually fit to
well reproduce the saturation energy and density of symmetric
nuclear matter, they differ significantly in other characteristics
of symmetric and pure neutron matter; in particular their
density dependence [31]. The Fermi energies of neutrons and
protons for some doubly magic nuclei can be measured with
a high precision. The neutron-proton Fermi-energy difference
and the correlation to nucleon separation energies of magic
nuclei are directly related to the symmetry energy of nuclei,
with which the isospin-dependent terms of the Skyrme forces
and thus the density dependence of the symmetry energy could
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be constrained. The paper is organized as follows: In Sec. II,
the correlation between Fermi energies and separation energies
of nucleons are introduced. In Sec. III, the nuclear symmetry
energy at subsaturation and saturation densities is extracted.
Finally, a summary is given in Sec. IV.

II. CORRELATION BETWEEN FERMI ENERGIES AND
SEPARATION ENERGIES OF NUCLEONS

Based on the liquid-drop mass formula, the binding energy
of a nucleus which is taken as a positive value is expressed as

BE(A,Z) = avA − asA
2/3 − ac

Z2

A1/3
− asymI 2A (1)

by neglecting nuclear microscopic corrections. I = (N −
Z)/A denotes the isospin asymmetry. The difference between
the proton separation energy [BE(A,Z) − BE(A − 1, Z −
1)] and the neutron separation energy [BE(A,Z) − BE(A −
1, Z)] of a nucleus is written as

�S = Sp − Sn � −2ac

Z

A1/3
+ 4asymI. (2)

Because the Coulomb energy coefficient ac = 3
5

e2

r0
�

0.71 MeV is usually well determined from the masses of
mirror nuclei [32,33], the value of �S is directly related to
the symmetry-energy coefficients of finite nuclei.

On the other hand, the single-particle energies (SPEs)
of a nucleus can be uniquely determined by solving the
Schrödinger equations or Hartree-Fock equations based on the
single-particle potential under the mean-field approximation.
In the Hartree-Fock theory for a closed-shell nucleus (A,Z),
the single-particle energies for states below the Fermi surface
are given by [34,35]

εp = BE∗(A − 1, Z − 1) − BE(A,Z) (3)

and

εn = BE∗(A − 1, Z) − BE(A,Z). (4)

The quantity ε will be negative for bound states. The quantity
(BE∗ = BE − Ex) is the ground-state binding energy minus
the excitation energy of the excited states associated with the
single-particle states. The difference between the Fermi energy
of neutrons and that of protons is

�ε = εF
n − εF

p , (5)

is closely related to the proton and neutron separation energies
of the nucleus. Here, the Fermi energy εF is defined as the
energy of the highest occupied quantum state in a system of
fermions at absolute zero temperature.

Figure 1 shows the calculated single-particle energies of
occupied states for protons and neutrons of 132Sn at its ground
state by using the Skyrme Hartree-Fock (SHF) model with the
parameter set SLy7 [36]. For this neutron-rich nucleus, the
Fermi energy of neutrons is higher than that of protons, and
the calculated value of �ε is 8.1 MeV. The depth of the single-
particle potential plays a dominant role for the corresponding
Fermi energy of a given nucleus. The difference �ε closely
relates to the difference between the depth of nuclear potentials

FIG. 1. (Color online) Single-particle potentials and the single-
particle energies (SPEs) of bound states for 132Sn with the Skyrme
Hartree-Fock calculation by using SLy7 force. The dashed lines
denote the highest SPE of the occupied states for nucleons in 132Sn
at its ground state.

for neutrons and protons,

Vn − (Vp + VC) � −3

2

e2

rc

Z

A1/3
+ 2VsymI. (6)

Here, VC � 3
2

e2

rc

Z
A1/3 denotes the Coulomb potential of a

nucleus at the central position with the potential radius
rc ≈ 1.3 fm. The information on the symmetry potential Vsym

from the Fermi energy difference is of great importance for
the study of nuclear symmetry energy.

It is known that, under the mean-field approximation, if the
single-particle motion plays a dominant role for the behavior of
nucleons near the Fermi surface, one expects that the relation
�S � �ε holds for the closed-shell nuclei. The experimental
values of �ε for six doubly magic nuclei 16O, 40Ca, 48Ca, 56Ni,
132Sn, and 208Pb are −3.53, −7.31, 6.10, −9.47, 8.40, and
0.64 MeV, respectively [34,35]. The corresponding separation-
energy differences �S for these six nuclei are −3.53, −7.31,
5.86, −9.48, 8.39, and 0.64 MeV, respectively. One sees that
the relation �S � �ε does hold very well, as expected for
these doubly magic nuclei. To further test the relation, the
values of �ε for 19 doubly magic or semimagic nuclei (16,22O,
22,42Si, 40,48,60Ca, 42Ti, 56,68,78Ni, 130Cd, 100,132,134Sn, 134Te,
144Sm, 182,208Pb) are systematically investigated by using the
SHF model together with 54 commonly used Skyrme forces.
The calculated values are shown in Fig. 2 as a function of
�S. Here, the masses of unmeasured nuclei are predicted with
the Weizsäcker-Skyrme mass formula combining the radial
basis function correction (WS3RBF) [37]. The WS3RBF model
can reproduce the measured 2149 masses in AME2003 with
an rms deviation of 184 keV, and the predictive power is
also remarkable [38] (the rms deviation with respect to the
154 new masses of extremely neutron-rich and proton-rich
nuclei listed in AME2012 [39] is only 397 keV). The red
squares in Fig. 2, which denote the experimental data for
the six doubly magic nucleus mentioned previously, are quite
regularly located along the green line �S = �ε. The solid
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FIG. 2. (Color online) Fermi-energy difference as a function of
separation-energy difference. The red squares denote the experimen-
tal data for six doubly magic nuclei [34,35]. Others are the calculated
results with difference Skyrme forces.

circles, open circles, and crosses denote the results of three
Skyrme forces SkSC4 [40], SLy230a [41], and BSk17 [30],
respectively. The error bars denote the uncertainty of the model
calculations from 54 different Skyrme forces in which the
corresponding incompressibility coefficient for symmetry nu-
clear matter is K∞ = 230 ± 30 MeV and the saturation density
ρ0 = 0.16 ± 0.005 fm−3. One sees that the calculated results
from the traditional 10-parameter Skyrme forces support the
relation �S � �ε, even for the extremely neutron-rich and
proton-rich nuclei. The correlation between the Fermi-energy
difference and the separation energy difference for neutrons
and protons could be helpful for constraining the equation of
state for asymmetry nuclear matter. Here, we would like to
emphasize that the Fermi-energy difference can effectively
remove the influence of isospin-independent terms in the
nuclear forces.

III. NUCLEAR SYMMETRY ENERGY AT
SUBSATURATION AND SATURATION DENSITIES

Based on the calculated Fermi-energy difference �ε with
the 54 different Skyrme forces, the average deviation

〈σ 〉 = 1

m

m∑
i=1

|�ε(i) − �S(i)| (7)

from the m = 19 nuclei mentioned previously is calculated.
Figures 3(a) and 3(b) show the average deviation as a function
of symmetry energy Esym at the density of ρ = 0.09 and
0.11 fm−3, respectively. The nuclear symmetry energy in the
Skyrme energy density functional is expressed as

Esym(ρ) = 1

2

[
∂2(E/A)

∂I 2

]
I=0

= 1

3

h̄2

2m

(
3π2

2

)2/3

ρ2/3 − 1

8
t0(2x0 + 1)ρ

− 1

24

(
3π2

2

)2/3

�symρ5/3 − 1

48
t3(2x3 + 1)ρσ+1,

(8)

with �sym = 3t1x1 − t2(4 + 5x2). The quantities t0, t1, t2, t3,
x0, x1, x2, x3, and σ are the Skyrme parameters. The squares
and solid curves denote the results of 54 Skyrme forces and
the parabolic fit, respectively. One sees that the minimal
deviations are located around Esym(0.09) = 23.6 MeV and
Esym(0.11) = 26.2 MeV, respectively. We also note that the
obtained symmetry energies do not change appreciably if only
the six doubly magic nuclei are involved in the calculation of
the average deviation 〈σ 〉. It indicates that the Fermi-energy
difference is a useful observation for studying the symmetry
energy at subsaturation densities. The dashed line shows the
minimal value of the parabolic curve, which is 1.19 MeV. The
minimal average deviation from the 54 Skyrme forces is about
1.0 MeV. Considering the systematic error of the WS3RBF mass
model, which is about 0.19 MeV [37], the Skyrme forces with

FIG. 3. (Color online) Average deviation as a function of nuclear symmetry energy Esym at the density of (a) ρ = 0.09 fm−3 and (b)
0.11 fm−3, with 54 different Skyrme forces. The solid curves denote the parabolic fit to the squares. The dashed line show the position of
1.19 MeV.
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FIG. 4. (Color online) Average deviation as a function of
(a) saturation density ρ0 and (b) incompressibility coefficient K∞
of symmetric nuclear matter, based on the calculations of the 54
Skyrme forces.

〈σ 〉 � 1.19 MeV reasonably well describe the Fermi-energy
difference for the 19 nuclei mentioned previously.

As one of the key properties of nuclear matter, the symmetry
energy is particularly important in modeling nuclear matter and
finite nuclei because it probes the isospin part of the Skyrme
interaction. For a sensitive observation to investigate the
nuclear symmetry energy, the influence of isospin-independent
terms in the nuclear forces should be removed as clean as
possible. In Fig. 4, we show the average deviation as a function
of nuclear saturation density ρ0 and the incompressibility
coefficient K∞ for symmetry nuclear matter. One cannot
evidently obtain the optimal values of ρ0 and K∞ according to
the average deviations from the 54 Skyrme forces, since these
two quantities are determined by the isospin-independent parts
of the Skyrme interactions. We also note that the strength of the
spin-orbit interaction W0 in the Skyrme forces does not affect
the value of �ε, generally, due to the cancellation between
protons and neutrons, which is helpful to remove the influence
of the shell effect on the symmetry energy. For example, the
value of �ε for 132Sn only changes by 0.7% with a variation

of the strength of the spin-orbit interaction by 32% according
to the SLy7 calculations.

From the 54 Skyrme forces, 17 parameter sets with 〈σ 〉 �
1.19 MeV are selected for the description of Esym(ρ). These
selected Skyrme forces can well reproduce the experimental
data for the Fermi-energy difference of the six doubly magic
nuclei. We note that the symmetry energies obtained from these
17 Skyrme interactions are close to each other at densities
around ρc = 0.11 fm−3, and the value of Esym(ρc) = 26.2 ±
1.0 MeV with 1.5σ uncertainty. It could be much more useful
if the slope parameter of the symmetry energy at the saturation
density ρ0,

L = 3ρ0

(
∂Esym

∂ρ

)
ρ=ρ0

, (9)

can be also well constrained with this approach. Unfortunately,
we find that the uncertainties of the symmetry energy obtained
at densities lower and higher than ρc gradually increase.
Figure 5 shows the average deviation as a function of nuclear
symmetry energy Esym at the density of ρ = 0.13 and 0.16
fm−3. The parabolic behavior of the average deviation becomes
unclear with increasing of density and even disappears at
the saturation density. The corresponding uncertainties of the
symmetry energy at ρ = 0.13 and 0.14 fm−3 increase to 1.5
and 2.0 MeV, respectively. It indicates that the slope parameter
L cannot be well constrained by using the neutron-proton
Fermi-energy difference uniquely, although the nuclear sym-
metry energy at subsaturation density can be well described.

To further analyze the density dependence of the symmetry
energy at the saturation density, the values of the symmetry
energy at ρc and ρ0, the slope parameters L, and the neutron-
skin thickness �Rnp of 208Pb are listed in Table I. One sees
that for the seven Skyrme forces, i.e., SkSC4, SkSC1, v075,
v080, v090, v105, MSk3, the corresponding slope parameters
L are very small and even negative. In Ref. [31], it is
thought that the BSk, SkSC, and MSk families under-predict
both the symmetry energy and its derivative at the saturation
density. To further check these selected Skyrme forces for the
description of other physical quantities, we study the neutron-
skin thickness of 208Pb. The linear relationship between the
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FIG. 5. (Color online) The same as Fig. 3, but at the density of (a) ρ = 0.13 and (b) 0.16 fm−3.
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TABLE I. Nuclear symmetry energy and neutron-skin thickness �Rnp of 208Pb with the selected 17 Skyrme forces. 〈σ 〉 denote the
calculated average deviation according to Eq. (7) for the 19 nuclei. The units of �Rnp are fm, and those of the other quantities are MeV. The
bold-face entries denote the four forces with the smallest average deviation and reasonable neutron-skin thickness of 208Pb.

Label 〈σ 〉 Esym(ρc) Esym(ρ0) L �Rnp (208Pb) Ref.

Ska25s20 1.05 26.6 34.2 65.1 0.20 [31]
SV-sym32 1.07 25.4 32.1 57.4 0.19 [42]
SLy2 1.11 26.3 32.1 47.5 0.16 [43]
Ska35s20 1.12 26.3 33.5 64.4 0.20 [31]
BSk17 1.13 25.3 30.0 36.3 0.15 [30]
SLy230a 1.13 26.7 32.0 44.3 0.15 [41]
SLy7 1.17 26.5 32.0 46.9 0.16 [36]
SLy6 1.18 26.4 32.0 47.5 0.16 [36]
Skz1 1.19 27.7 32.0 27.7 0.15 [44]
SkT7 1.19 25.0 29.5 31.1 0.15 [45]

SkSC4 0.97 27.1 28.8 -2.4 0.11 [40]
v075 1.03 26.2 28.0 -0.3 0.11 [46]
v080 1.06 26.0 28.0 2.2 0.11 [46]
v090 1.14 25.8 28.0 5.1 0.11 [46]
MSk3 1.16 25.7 28.0 6.8 0.11 [47]
SkSC1 1.16 26.2 28.1 0.1 0.11 [48]
v105 1.18 25.7 28.0 7.1 0.11 [46]

slope parameter L and the �Rnp of 208Pb was observed in
Refs. [8,22]. Figure 6 shows the slope parameter L of these
Skyrme forces as a function of the corresponding neutron-skin
thickness of 208Pb. The corresponding values of �Rnp(208Pb)
from the seven Skyrme forces with L < 10 MeV are about
0.11 fm. The recent experimental measurements [23–26] for
the �Rnp of 208Pb show 0.131 � �Rnp(208Pb) � 0.218 fm.
It implies that the seven Skyrme forces with small L are
not suitable for the description of the symmetry energy at
around saturation densities. The other ten Skyrme forces
with 28 � L � 65 MeV, i.e., Ska25s20, Ska35s20, SV-sym32,
SLy2, SLy6, SLy7, SLy230a, BSk17, Skz1, and SkT7, describe
reasonably well both the Fermi-energy difference and the
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FIG. 6. (Color online) Slope parameter of nuclear symmetry
energy as a function of neutron-skin thickness of 208Pb. The region
between the two dashed vertical lines denotes the measured neutron-
skin thickness of 208Pb, 0.131 � �Rnp(208Pb) � 0.218 fm [23–26].

neutron-skin thickness of 208Pb. The obtained central value of
L with this approach is generally consistent with the result
from neutron star mass and radius measurements [9]. Out
of the ten forces, four with the smallest average deviation
(〈σ 〉 � 1.12 MeV, see Table I) have values of L = 56 ± 9 MeV
for the slope parameter, and the Skyrme forces Ska25s20,
Ska35s20, and SV-sym32 were also recommended in a recent
study [31].

Figure 7 shows the calculated nuclear symmetry energy
as a function of density. The squares (with 1.5σ uncertainty
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FIG. 7. (Color online) Nuclear symmetry energy as a function of
density. The squares denotes the results from the 17 selected Skyrme
forces based on the Fermi-energy difference. Other symbols and
curves denote the results of ten selected Skyrme forces with which
both the Fermi-energy difference and the neutron-skin thickness of
208Pb can be reasonably well described.
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as the error bar) denote the results from the 17 selected
Skyrme forces listed in Table I. Other symbols and curvatures
denote the results from the ten selected forces which can
simultaneously well describe the neutron-skin thickness of
208Pb. The symmetry energy at the saturation density from
the ten selected Skyrme forces is Esym(ρ0) = 31.9 ± 2.1 MeV
with 1.5σ uncertainty.

IV. SUMMARY

The correlation between the neutron-proton Fermi-energy
difference �ε and the separation energy difference �S for
some doubly magic and semimagic nuclei is analyzed with the
Skyrme energy density functionals and nuclear masses, with
which nuclear symmetry energy at subsaturation densities is
constrained from 54 different Skyrme forces. The experimental
data and the Skyrme Hartree-Fock calculations show �S �
�ε for closed-shell nuclei, even for the extremely neutron-rich
and proton-rich cases. The correlation between �ε and �S is
a good observation for studying the nuclear symmetry energy
at subsaturation densities, which probes the isospin-dependent
part of the Skyrme interaction, since the cancelation between
protons and neutrons directly removes the influence of isospin-
independent terms. The extracted symmetry energy from 17
selected Skyrme forces at the density of 0.11 fm−3 is about

26.2 ± 1.0 MeV. The slope parameter of symmetry energy is
also studied by further combining the neutron-skin thickness
of 208Pb. Out of 54 Skyrme forces, ten with 28 � L � 65 MeV
can reasonably well describe both the Fermi-energy difference
and the neutron-skin thickness of 208Pb. Within the ten
forces, four Skyrme forces with the smallest deviation (i.e.,
Ska25s20, Ska35s20, SV-sym32, and SLy2) have values of
L = 56 ± 9 MeV for the slope parameter. The structures and
masses of finite nuclei at the ground states is helpful to obtain
information on symmetry energy at the subsaturation densities.
One should also note that the uncertainty of the symmetry en-
ergy extracted from nuclear structures significantly increases
with density in the region ρ > 0.16 fm−3. It implies that
more-isospin-sensitive observations from heavy-ion collisions
at intermediate and high energies and neutron stars are still
required for further constraining the symmetry energy at the
saturation and supersaturation densities.
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