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Calculation of penetration probability across an arbitrary potential barrier in fusion reactions
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The penetration probability across an arbitrary nucleus-nucleus potential barrier is studied by using transfer
matrix approach, including continuous variations of effective mass. The calculated penetration probabilities
for reaction 16O + 208Pb are closed to those of WKB and modified Numerov calculations based on the Bass
potential. With the transfer matrix approach, the influence of the effective mass on the penetration probability are
simultaneously investigated. The calculations imply that the effective mass is an important quantity for studying
the hindrance of fusion cross sections of some reactions at deep sub-barrier energies. The fusion cross sections
of heavy-ion fusion reactions and the resonance phenomena due to double-hump barriers are also studied with
this approach.
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I. INTRODUCTION

Quantum tunneling in microscopic systems is one of the
fundamental phenomena in physics and chemistry. As an
example, the tunneling plays a key role for fusion of two
nuclei and α-decay of heavy nuclei in nuclear physics at sub-
barrier energies. In recent decades, heavy-ion fusion reactions
have been extensively studied for synthesizing super-heavy
elements [1–3] and for understanding the S factors [4–7]
at deep sub-barrier energies in fusion reactions. Accurate
calculation of the penetration probability across an arbitrary
nucleus-nucleus potential barrier is of great importance for the
description of the fusion cross sections and the α-decay half-
lives of super-heavy nuclei [8,9]. Therefore, a lot of methods
for calculation of the penetration probability were proposed.
One of the methods is to solve the Schrödinger’s equations
through the potential barriers such as the widely used code
CCFULL [10], which applies the modified Numerov method
for the coupled-channels calculations in the study of heavy-
ion fusion reactions. The WKB (Wentzel-Kramers-Brillouin)
approximation is also widely used for the quantum tunneling
calculations. The traditional WKB method is inaccurate in
regions where the potential profile varies abruptly [11], fails to
describe the resonance phenomena, and encounters difficulty
when the incident energies are close to the barriers. In addition,
the effective mass (or mass parameter) μ(R) was simply taken
to be the reduced mass in many studies, such as in the modified
Numerov calculations [10]. For fusion reactions of heavy
nuclei, the process for penetrating the barrier becomes more
complicated and the μ(R) could not be simply taken to be
the reduced mass [12,13]. Thus, the impact of the effective
mass on the penetration probability should be studied. In
this work, we attempt to calculate the penetration probability
across an arbitrary potential barrier with an arbitrary incident
energies based on the transfer matrix approach [11], including
continuous variations of the effective mass.

This paper is organized as follows: In Sec. II, the transfer
matrix method is introduced for calculation of the penetration
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probability. In Sec. III, some calculated results with the transfer
matrix approach based on some different nucleus-nucleus
potentials are presented and compared with those from the
WKB formula and the modified Numerov method. Finally, the
conclusion is given in Sec. IV.

II. TRANSFER MATRIX METHOD

In this section, for the reader’s convenience, we first briefly
introduce the WKB formula. Then we will introduce the
transfer matrix method in detail. More introductions and
calculations of the transfer matrix method were presented in
Ref. [11]. For an arbitrary potential V (R) (as an example,
the Bass potential [14] for the reaction 16O + 208Pb is shown
in Fig. 1), which is a function of distance R between two
nuclei, the penetration probability across the potential barrier
is expressed as

T = exp

{
−2

h̄

∫ a

b

√
2μ(R)[V (R) − E]dR

}
, (1)

according to the WKB approximation in a textbook. Where,
μ(R) is the coordinate dependent effective mass of the reaction
system, h̄ is the reduced Planck constant, and E is the center-of-
mass energy. a and b with V (R = a) = V (R = b) = E denote
the classical turning points outside and inside of the barrier,
respectively. From Eq. (1), one notes that the incident energy
E can not be higher than the barrier height when applying this
formula.

To describe the penetration probability at an arbitrary
incident energy, we apply the transfer matrix approach, which
is a method for accurately calculating the transfer coefficient
across arbitrary potential barriers. In this method, the potential
energy and the effective mass are approximately described
by multistep functions (multistep potential approximation). In
other words, the potential barrier is split into many segments,
in which potential energy can be regarded as a constant. In
the limit as the divisions become finer and finer, a continuous
variation for the potential will be recovered.
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FIG. 1. (Color online) Bass potential for the reaction 16O + 208Pb.

Assuming that the potential barrier is split into N small
segments. An example, in the case where N = 9, is shown in
Fig. 2, where the potential barrier V (R) and the effective mass
μ(R) are approximated by the multistep functions,

Vj = V

(
Rj−1 + Rj

2

)
(2)

and

μj = μ

(
Rj−1 + Rj

2

)
, (3)

for Rj−1 > R > Rj (j = 0, 1, 2, . . . , N,N + 1). The wave
function ψj (R) in the j th region, which is a combination of
the incoming and outgoing waves and associated with the
center-of-mass energy E, is given by

ψj = Aj expikj x +Bj exp−ikj x, (4)

where kj = √
2μj (E − Vj )/h̄. From the continuity of the

wave function and its derivative at each boundary, the
determining of Aj and Bj in Eq. (4) can be re-
duced to the multiplication of the following N + 1 (2×2)
matrices:

(
Aj

Bj

)
=

j−1∏
l=0

Ml

(
A0

B0

)
, (5)

where

Ml = 1

2

{
(1 + Sl) exp[−i(kl+1 − kl)Rl] (1 − Sl) exp[−i(kl+1 + kl)Rl]

(1 − Sl) exp[i(kl+1 + kl)Rl] (1 + Sl) exp[i(kl+1 − kl)Rl]

}
(6)

and

Sl = μl+1

μl

kl

kl+1
. (7)

By imposing the incoming wave boundary condition [10]
(i.e., there are only incoming waves at R < RN and the
entrance channel has an incoming wave with amplitude one),
one sets A0 = 1 and BN+1 = 0 in Eq. (5) for j = N + 1, we
can calculate the transfer amplitude AN+1 and the penetration
probability T (E) as follows:

AN+1 = μN+1

μ0

k0

kN+1

1

M22
(8)

FIG. 2. (Color online) Bass potential (solid squares) and approx-
imated potential function (multistep line) for the potential barrier.

and

T (E) = μ0

μN+1

kN+1

k0
|AN+1|2, (9)

where

M =
(

M11 M12

M21 M22

)
=

N∏
l=0

Ml. (10)

III. RESULTS

In this section, we first test the transfer matrix approach.
Then we will study the influence of effective mass and double-
hump shape of a nucleus-nucleus potential on the penetration
probability.

Bass [14] derived a nucleus-nucleus potential using a
geometric interpretation of fusion data above the barrier for
fusion systems:

VBass(R) = − RpRt

Rp + Rt

[0.033 exp(s/3.5)

+ 0.007 exp(s/0.65)]−1 + ZpZte
2

R
, (11)

where s = R − Rp − Rt denotes the separation between the
half-density surfaces of the (spherical) interacting nuclei. The
radius of the projectile nucleus Rp and that of the target Rt

are derived by using Rp,t = Rs(1 − 0.98/R2
s ), where Rs =

1.28A1/3 − 0.76 + 0.8A−1/3.
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FIG. 3. (Color online) (a) Penetration prob-
ability based on the Bass potential for
16O + 208Pb. The solid curve, squares, and open
circles denote the results with the transfer matrix
approach, the WKB formula and the modified
Numerov method, respectively. (b) The same as
(a) but in the logarithmic scale.

Figure 3 shows the obtained penetration probability based
on the Bass potential in Fig. 1 with the transfer matrix approach
(solid curve), the WKB formula (squares), and the modified
Numerov method (open circles), respectively. The modified
Numerov method adopted in the CCFULL code solves the
Schrödinger’s equations outwards from the minimum position
of the Coulomb pocket by imposing the incoming wave
boundary condition mentioned previously. When the incident
energies are below the Coulomb barrier, the results from these
three different approaches are close to each other. At energies
above the Coulomb barrier, the results from the modified
Numerov and those with the transfer matrix method are also
close to each other. The variation of the effective mass μ

in fusion process has not yet been considered in the present
version of CCFULL code [10]. We therefore temporarily set
the effective mass to be the reduced mass μ0 = ApAt

Ap+At
m with

the nucleon mass m in this calculation for comparison.
With the transfer matrix method, the influence of the

variation of the effective mass on the penetration probability

FIG. 4. (Color online) (a) Nucleus-nucleus potential of
90Zr + 90Zr by using the ImQMD model with the parameter set IQ2
and the incident energy of E = 200 MeV. (b) Effective mass μ as a
function of center-to-center distance R. Here, μ0 = ApAt

Ap+At
m denotes

the reduced mass of the reaction system. RCN = 1.16(Ap + At )1/3

denotes the radius of the compound nucleus. The thick solid
curve denotes the results of the ImQMD simulations with IQ2 in
Ref. [12]. The open circles denote an empirical formula F (R) =
1 + exp(−0.72R/RCN)(R/RCN)−4 with the parameter by fitting the
solid curve.

can be simultaneously studied. In Ref. [12], the mass parameter
for the relative motion in heavy-ion fusion reaction 90Zr + 90Zr
was studied with the improved quantum molecular dynamics
(ImQMD) model [15], and it is found that the effective
mass μ is around the reduced mass μ0 when the reaction
partners are at the separated configuration and increases with
a decrease of the distance between two reaction partners
after the touching configuration. With the ImQMD model and
the same approach as was used in Ref. [16], the dynamical
nucleus-nucleus potential of 90Zr + 90Zr is calculated and
shown in Fig. 4(a). To calculate the penetration probability
more conveniently, we describe the variation of the effective
mass μ(R) by using an empirical formula F (R) = 1 +
exp(−0.72R/RCN)(R/RCN)−4, i.e., μ(R) = μ0F (R) for this
reaction. From Fig. 4(b), one sees that the formula F (R)
reproduces the ImQMD calculations reasonably well. Figure 5
shows the comparison of the calculated penetration probability
by using the transfer matrix method for the cases with the
effective mass μ = μ0 and μ = μ0F , respectively. When
the incident energies are below the Coulomb barrier, the
penetration probabilities strongly depend on the effective mass
adopted. The penetration probability is significantly reduced
with the increasing of the effective mass at short distances
comparing with the case taking μ = μ0. These investigations
indicate that the effective mass should also be considered for
explaining the hindrance of fusion cross sections of some

FIG. 5. (Color online) Penetration probability across the potential
barrier in Fig. 4(a) by using the transfer matrix method for the cases
with the effective mass μ = μ0 (open circles) and μ = Fμ0 (solid
squares), respectively. Here, we set RN = 5 fm in the calculations.
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FIG. 6. (Color online) Fusion excitation function of 16O + 208Pb.
The solid curve and open circles denote the results with the Hagino-
Watanabe potential and Bass potential, respectively. The squares and
solid circles denote the experimental data taken from Ref. [18] and
the results in Ref. [19] based on an empirical barrier distribution,
respectively. The open circles and solid squares in the inset denote
the Bass potential and the potential proposed by Hagino and Watanabe
for 16O + 208Pb, respectively.

reactions at deep sub-barrier energies, in addition to the nuclear
potentials.

With the transfer matrix method and different nucleus-
nucleus potentials of 16O + 208Pb, the fusion cross sections
for this reaction at energies around the Coulomb barrier
are studied simultaneously. Here, the centrifugal potential
l(l+1)h̄2

2μR2 is added to the nucleus-nucleus potential to consider
the angular momentum l of the relative motion. With the
penetration probability from the transfer matrix method, one
can obtain the corresponding fusion cross section:

σfus(E) = π

k2
0

∑
l

(2l + 1)Tl(E). (12)

Figure 6 shows the calculated fusion excitation function of
16O + 208Pb. The solid curve and open circles denote the results
with the Hagino-Watanabe potential [17], which is extracted by
inverting the experimental data for heavy-ion fusion reactions
at energies well below the Coulomb barrier and the Bass
potential, respectively. The squares and small solid circles
denote the experimental data taken from Ref. [18] and the
results in Ref. [19] based on an empirical barrier distribution,
respectively. Here, we set μ = μ0 in the calculations of
the fusion cross sections at energies around the Coulomb

barrier. (For fusion reaction at deep sub-barrier energies, one
should consider the variations of the effective mass.) With
the extracted barrier by Hagino and Watanabe, the fusion
cross sections of 16O + 208Pb at sub-barrier and over-barrier
energies can be described reasonably well; however, the
fusion cross sections at energies near the Coulomb barrier
cannot be described well. With the Bass potential, the fusion
cross sections at sub-barrier energies are under-predicted. It
is known that the one-dimensional barrier penetration model
with empirically determined potential barrier is successful in
describing the fusion excitation functions for light systems. For
heavy systems, the coupling of the relative motion to internal
degrees of freedom which causes a barrier distribution should
be taken into account. With the empirical barrier distribution
and the barrier penetration concept, it was found that the
experimental data can be reproduced well [19].

Finally, we investigate the resonance phenomena in fusion
reactions between light nuclei such as 12C + 12C [20]. The
resonance phenomena due to the double-hump fission barriers
of some actinide nuclei is also found in fission process.
To check the transfer matrix approach for describing the
resonance phenomena, we construct some potentials based on
the Bass potential, by introducing an inner barrier of Gaussian
form inside the Coulomb barrier,

V = VBass + C exp

[
− (R − 3)2

2

]
, (13)

with the parameter C to adjust the height of the inner barrier.
Figure 7 shows the constructed potential barriers with different
values of C and the corresponding penetration probability
obtained with the transfer matrix approach. With increasing the
value of C, the height of the inner barrier increases. We note
that there exists obvious resonance peak for the penetration
probability when the inner barrier height is comparable to the
outer barrier height. The resonance due to the quantum effect
can result in a significant change of the penetration probability
at a certain incident energy.

IV. SUMMARY

The penetration probability across an arbitrary potential
barrier has been investigated by using the transfer matrix
approach. The calculated penetration probability across the
Bass barrier is close to the results of the WKB formula and
those of modified Numerov method. By using the transfer
matrix method, various potential barriers and wells can be

FIG. 7. (Color online) (a) Modified Bass
potential barriers with different values of C.
(b) Corresponding penetration probability across
the potential barriers in (a). The short-dashed
lines are to guide the eyes.
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analyzed, including continuous variations of the effective
mass, which is not considered in commonly used numerical
schemes such as the modified Numerov method adopted in the
CCFULL code. The penetration probability is significantly
reduced at energies below the potential barrier with the
increasing of the effective mass at short distances comparing
with the case taking the reduced mass, which indicates
the effective mass is an important quantity for studying
the hindrance of fusion cross sections of some reactions at
deep sub-barrier energies. With the transfer matrix method
and different nucleus-nucleus potentials of 16O + 208Pb, the
corresponding fusion cross sections at energies around the
Coulomb barrier have been studied simultaneously. We find
that for heavy systems, the coupling of the relative motion to
internal degrees of freedom which causes a barrier distribution
should be taken into account for a reasonable description

of the fusion cross sections spanning the Coulomb barrier.
The resonance phenomena can be clearly observed for some
double-hump barriers, especially when the inner barrier height
is close to the outer barrier height. The resonance due to
the quantum effect can result in a significant change of the
penetration probability at a certain incident energy. These
investigations are helpful for understanding the mechanism of
fusion reactions at deep sub-barrier energies and the resonance
phenomena.
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[7] Ş. Mişicu and H. Esbensen, Phys. Rev. Lett. 96, 112701 (2006).
[8] C. Xu and Z. Ren, Nucl. Phys. A 753, 174 (2005).
[9] H. F. Zhang, Y. Gao, N. Wang, J. Q. Li, E. G. Zhao, and

G. Royer, Phys. Rev. C 85, 014325 (2012).
[10] K. Hagino, N. Rowley, and A. T. Kruppa, Comp. Phys. Comm.

123, 143 (1999).
[11] Y. J. Ando and T. H. Ioth, J. Appl. Phys. 61, 4 (1987).

[12] K. Zhao, Z. Li, X. Wu, and Z. Zhao, Phys. Rev. C 79, 024614
(2009).

[13] T. Ichikawa, K. Hagino, and A. Iwamoto, Phys. Rev. C 75,
057603 (2007).

[14] R. Bass, Lecture Notes in Physics 117 (Springer, Berlin, 1980),
pp. 281–293.

[15] N. Wang, Z. Li, X. Wu, J. Tian, Y. X. Zhang, and M. Liu, Phys.
Rev. C 69, 034608 (2004).

[16] Y. Jiang, N. Wang, Z. Li, and W. Scheid, Phys. Rev. C 81, 044602
(2010).

[17] K. Hagino and Y. Watanabe, Phys. Rev. C 76, 021601(R) (2007).
[18] C. R. Morton, A. C. Berriman, M. Dasgupta, D. J. Hinde,

J. O. Newton, K. Hagino, and I. J. Thompson, Phys. Rev. C
60, 044608 (1999).

[19] M. Liu, N. Wang, Z. Li, X. Wu, and E. Zhao, Nucl. Phys. A 768,
80 (2006).

[20] B. Sahu, S. K. Agarwalla, and C. S. Shastry, Pramana-J. Phys.
61, 51 (2003).

054623-5

http://dx.doi.org/10.1016/j.ppnp.2006.05.001
http://dx.doi.org/10.1016/j.ppnp.2006.05.001
http://dx.doi.org/10.1103/PhysRevLett.104.142502
http://dx.doi.org/10.1103/PhysRevLett.104.142502
http://dx.doi.org/10.1103/PhysRevC.84.061601
http://dx.doi.org/10.1103/PhysRevC.84.061601
http://dx.doi.org/10.1016/j.physletb.2006.07.007
http://dx.doi.org/10.1103/PhysRevC.84.051601
http://dx.doi.org/10.1103/PhysRevC.84.051601
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1103/PhysRevC.82.054609
http://dx.doi.org/10.1103/PhysRevLett.96.112701
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.125
http://dx.doi.org/10.1103/PhysRevC.85.014325
http://dx.doi.org/10.1016/S0010-4655(99)00243-X
http://dx.doi.org/10.1016/S0010-4655(99)00243-X
http://dx.doi.org/10.1063/1.338082
http://dx.doi.org/10.1103/PhysRevC.79.024614
http://dx.doi.org/10.1103/PhysRevC.79.024614
http://dx.doi.org/10.1103/PhysRevC.75.057603
http://dx.doi.org/10.1103/PhysRevC.75.057603
http://dx.doi.org/10.1103/PhysRevC.69.034608
http://dx.doi.org/10.1103/PhysRevC.69.034608
http://dx.doi.org/10.1103/PhysRevC.81.044602
http://dx.doi.org/10.1103/PhysRevC.81.044602
http://dx.doi.org/10.1103/PhysRevC.76.021601
http://dx.doi.org/10.1103/PhysRevC.60.044608
http://dx.doi.org/10.1103/PhysRevC.60.044608
http://dx.doi.org/10.1016/j.nuclphysa.2006.01.011
http://dx.doi.org/10.1016/j.nuclphysa.2006.01.011
http://dx.doi.org/10.1007/BF02704510
http://dx.doi.org/10.1007/BF02704510

