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In this paper we predict atomic masses which are not experimentally accessible by using local mass relations
which connect with the proton-neutron interactions with improved accuracy. Based on our predicted masses, we
investigate one-proton and one-neutron drip lines for a few regions in the nuclide chart and α-decay half-lives
times for some isotopes with proton number 102 � Z � 106. The impact of our predicted one-neutron separation
energies on astrophysical r-process nucleosynthesis is discussed within the framework of a classical r-process
model.
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I. INTRODUCTION

Atomic mass (or binding energy) is a fundamental quantity
of a nucleus. It is the key input for theoretical studies on the
origin of the heavy elements, especially those on the rapid
proton (rp) and rapid neutron (r) capture processes. Although
many atomic masses for nuclei close to the β-stability line
are measured very accurately, the values of atomic masses
remain unknown for a large number of unstable nuclei, due to
difficulties in production, separation, and detection.

Describing and predicting atomic masses (or masses for
short) have therefore been one of the focuses of nuclear
structure physics. Great efforts along this line have been made,
with the root-mean-squared deviations (rmsD for short) of
several hundred keV to 1 MeV with respect to experimental
data [1–30]. Some of these studies are based on microscopic
and/or macroscopic mass models; for example, the Duflo-
Zuker model (D-Z) [4,5], the finite range droplet model
(FRDM) [6,7], the Skyrme-Hartree-Fock-Bogoliubov theory
(SHFB) [8–10], the Weizsäcker-Skyrme (WS) mass model
[11–14], the Wigner-Kirkwood method [15], and the energy
functional with shell-model occupations [16] with the rmsD
from 200 to 1300 keV. There are also studies using local
nuclear mass relations, such as the Audi-Wapstra systematics
[17–19], the Garvey-Kelson (G-K) mass relations [20–27], and
the mass relations based on the residual proton-neutron (p-n)
interactions [28–30], with the rmsD from 60 to 300 keV. For
comprehensive reviews, see Refs. [31,32].
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In this paper we improve the accuracy of both the
description of the known atomic masses and the prediction of
the unknown, and investigate one-proton separation energies
Sp, one-neutron separation energies Sn, two-proton separation
energies S2p, and two-neutron separation energies S2n. Based
on our predicted results, we discuss the proton and neutron
drip lines, α-decay energies, and α-decay half-lives for some
transuranium nuclei as well as their implications in the r-
process nucleosynthesis in the universe.

Our method is an extrapolation approach enlightened by
systematics of the proton-neutron (p-n) interactions. These
interactions have been realized to play a crucial role in the
evolution of collectivity, deformation, and phase transitions
[33–37] and were extensively studied in Refs. [38–52].
Assuming empirical values of the p-n interactions, some
of the present authors studied local mass relations [28–30].
In this paper we refine our p-n interactions, and make use
of the recent experimental database compiled by Audi and
Wang [53] in our extrapolations. We predict 1566 atomic
masses, 4941 Sp, 6426 Sn, 2457 S2p, and 3960 S2n, with
theoretical uncertainties below 1000 keV. The values of
theoretical uncertainties are evaluated by the same procedures
as in Ref. [30], independently for atomic mass and different
types of separation energies.

This paper is organized as follows: In Sec. II we discuss our
improvements in both descriptions and predictions of atomic
masses and neutron- and proton-separation energies. In Sec. III
we investigate one-proton and one-neutron drip lines, and α-
decay lifetimes of transuranium nuclei, as well as isotopic
abundances under certain astrophysical condition, based on
our predicted results. Our summary and conclusion are given
in Sec. IV.
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II. PREDICTION OF ATOMIC MASSES

In this paper we take similar conventions as in Refs. [19,53].
For the convenience of readers, we repeat them here. We denote
the nuclear mass by MN , atomic mass by M , proton number
by Z, neutron number by N , mass number by A (= Z + N ),
the total binding energy for Z electrons outside the nucleus by
Be, mass excess by M ′, unified atomic mass unit by mu (one
twelfth of the atomic mass of one 12C atom in its electronic
and nuclear ground states), and binding energy by B(N,Z).
We have

MN (Z,N ) = M(Z,N ) + ZMe − Be,

M ′(Z,N ) = M(Z,N ) − Amu,

B(N,Z) = ZMH + NMn − M(Z,N ),

Sip(Z,N ) = M(Z − i, N) + iMH − M(Z,N )

= B(Z,N ) − B(Z − i, N),

Sin(Z,N ) = M(Z,N − i) + iMn − M(Z,N)

= B(Z,N ) − B(Z,N − i).

Here Sip and Sin are the i-proton and i-neutron separation
energies, respectively. The total p-n interactions (denoted by
δVip-jn) between the last i proton(s) and the last j neutron(s)
[40–43] are defined as follows:

δVip-jn(Z,N ) = Sip(Z,N ) − Sip(Z,N − j )

= Sjn(Z,N ) − Sjn(Z − i, N)

= [B(Z,N ) − B(Z,N − j )]

− [B(Z − i, N) − B(Z − i, N − j )]. (1)

For (i, j ) = (1, 1), (1, 2), (2, 1), the values of δVip-jn are found
to exhibit compact correlations with mass number A and
thus are very useful to describe and to predict atomic masses
[28–30].

In our extrapolation approach [29,30], it is crucial to evalu-
ate the values of δVip-jn as accurately as possible. In Ref. [30]
δVip-jn was assumed to take the average value of δVip-jn(A)
[denoted by δVip-jn(A)] with a number of corrections (the
shell effect, the Coulomb correction, the symmetry energy
correction) among which the dominant correction is called the
shell correction. In this work, instead of considering all these
corrections, we focus on the dominant shell correction. We
assume free parameters of the shell correction for each shell.
We denote our evaluated δVip-jn by using δV cal

ip-jn and have

−δV cal
1p-1n(Z,N ) = − δV1p-1n(A) + �sh(Z,N ),

−δV cal
1p-2n(Z,N ) = − δV1p-2n(A) + �sh(Z,N )

+ �sh(Z,N − 1),

−δV cal
2p-1n(Z,N ) = − δV2p-1n(A) + �sh(Z,N )

+ �sh(Z − 1, N), (2)

where

�sh(Z,N ) = ash + 2bsh|δp�N (Np − �Z)

− δn�Z(Nn − �N )| (3)

is called the shell correction term, introduced in Ref. [30].
The shell effect on residual proton-neutron interactions was

TABLE I. The parameters [in keV, see Eq. (3)] taken in this work
for different mass regions. These parameters are obtained via a χ2

fitting procedure.

Region Parameter Even-A Odd-A

Z ∈ [1, 28), N ∈ [1, 28) ash 28.55 136.7
bsh −0.3958 −5.138

Z ∈ [1, 28), N ∈ [28, 50) ash 7.372 45.74
or Z ∈ [28, 50), N ∈ [1, 28) bsh −0.628 −0.1966
Z ∈ [28, 50), N ∈ [28, 50) ash 141.3 −177.2

bsh −0.6086 0.8863
Z ∈ [28, 50), N ∈ [50, 82) ash 59.26 7.282
or Z ∈ [50, 82), N ∈ [28, 50) bsh −0.2223 −0.0007
Z ∈ [50, 82), N ∈ [50, 82) ash 129.2 −84.88
or Z ∈ [28, 50), N ∈ [82, 126) bsh −0.2666 0.1337
Z ∈ [50, 82), N ∈ [82, 126) ash 60.64 107.9
or Z ∈ [82, 126), N ∈ [50, 82) bsh −0.1124 −0.2617
Z ∈ [82, 126), N ∈ [82, 126) ash 11.37 18.81
or Z ∈ [50, 82), N ∈ [126, 184) bsh −0.1067 −0.0266
Z ∈ [82, 126), N ∈ [126, 184) ash 44.67 −11.25

bsh −0.1697 0.0499

discussed in Refs. [46,47,50], where it was shown that proton-
neutron interactions are stronger if the proton fractional fillings
and neutron fractional fillings are close to each other [52].
The form of our shell correction �sh is enlightened by this
feature. Here Np (Nn) is the valence proton (neutron) number
with respect to the nearest closed shell, δp (δn) equals +1
if the valence protons (neutrons) are particle-like and −1 if
are hole-like, �Z = ∑

jZ
(jZ + 1

2 ) where jZ represents spin of
single-particle levels for valence protons, and similarly �N =∑

jN
(jN + 1

2 ) where jN represents spin of single-particle levels
for valence neutrons. There are two shell-correction terms
in both δV cal

1p-2n and δV cal
2p-1n, because these two types of p-n

interactions can be decomposed into two terms of δV cal
1p-1n [30].

The parameters ash and bsh are adjusted for each shell to
optimize the agreement between the calculated δV cal

ip-jn based
on Eq. (2) and δVip-jn evaluated from Eq. (1). Our ash and bsh

are shown in Table I, where one sees that, for different shells,
their values change drastically. They are also very different
from those if one uses only one unified set of parameters
(see Table I of Ref. [30]) for all shells. Such change suggests
that the role played by the shell closures on δV cal

ip-jn(N,Z) is
complicated and very different in different regions.

Table II compares the rmsDs (in keV) of our δV cal
ip-jn

evaluated by Eq. (2) with those extracted by using experimental
masses. We also list the rmsD values of δV cal

ip-jn evaluated in
Ref. [30]. One sees the values of δV cal

ip-jn in this work are
refined in comparison with those in Ref. [30]. For mass number
A � 16, the rmsD between our calculated δVip-jn and those
extracted by using experimental masses is reduced by ∼21 to
29 keV.

Replacing δVip-jn [(i, j ) = (1, 1), (1, 2), (2, 1)] in Eq. (1)
by using δV cal

ip-jn evaluated by using Eq. (2), we obtain a number
of ways to evaluate the binding energies, one- or two-proton,
and one- or two-neutron separation energies. For simplicity
we leave these formulas in the appendix [the formulas of
predicting binding energies are the same as Eqs. (9) and (10)
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TABLE II. The rmsDs (in keV) of our calculated δV cal
ip-jn in

comparison with those extracted by experimental data of binding
energies compiled in Ref. [53]. For comparison we list the rmsD of
our δV cal

ip-jn calculated in Ref. [30].

Region δV1p-1n δV1p-2n δV2p-1n

This work A � 16 184 213 220
A � 60 142 150 163
A � 120 121 129 141

Ref. [30] A � 16 213 235 241
A � 60 159 168 175
A � 120 124 134 142

of Ref. [30], and thus are omitted in this paper]. Similar to
Refs. [24–30], we take the average of all possible Bpred(N,Z),
[Spred

p (Z,N ), S
pred
n (Z,N ), S

pred
2p (Z,N ), and S

pred
2n (Z,N )] for

a given nucleus. The uncertainty of our predicted results is
calculated by the same method as in Ref. [30].

Before going to our predicted results, it is worth taking
a look at the accuracy of our description for known masses.
In Table III we show the rmsDs of our calculated masses in
comparison with experimental values in the database compiled
in Ref. [53]. The results obtained in Refs. [29,30] and those
by using the Garvey-Kelson relations are also presented. One
sees the substantial improvement of the accuracy in describing
the known masses in the present work.

Our predicted masses usually have small uncertainties; in
particular for cases when the number of equations to evaluate
the mass for a given nucleus is larger than one, the uncertainties
of our predicted masses are sometimes smaller than those
of the experimental data. In such cases we replace such
experimental values by using our predicted results and find
improvements in extrapolating the AME2003 database [19] to
predict unknown masses. In Table IV we show the results of a
numerical experiment: We calculate the rmsDs (in keV) of our
predicted masses based on the AME2003 database [19] with
respect to the new experimental data (151 nuclei) compiled in
Ref. [53]. In one set of predictions, we assume all experimental
data compiled in Ref. [19]; in another set of predictions, we
replace experimental data by using our predicted results which
have smaller uncertainties; that is, when the experimental
uncertainties are larger than those of our predicted results,
we replace these experimental data by our predicted results.

TABLE III. rmsDs (in keV) of our predicted masses and experi-
mental results compiled in Ref. [53]. For comparison we present the
rmsDs of predicted masses by using the G-K relations (2nd row) of
Ref. [25], the rmsDs obtained in Refs. [29,30] (3rd and 4th rows),
for nuclei with A � 60. n is the number of possible evaluations for a
given nucleus.

Relations n � 1 n � 4 n � 7 n � 8 n � 12

This work 89 80 73 72 67
G-K 115 98 86 76
Ref. [29] 123 92 73 70
Ref. [30] 107

TABLE IV. The rmsDs (in keV) of our predicted masses based
on the AME2003 database [19] with respect to the new data
(151 nuclei) compiled in Ref. [53]. Pred-1 assumes the experimental
data compiled in Ref. [19], and Pred-2 replaces experimental data
by our predicted results for which our predicted results have smaller
uncertainties. Pred-3 correspond to the rmsDs of the predicted results
in the AME2003 database [19] in comparison with new experimental
data compiled in Ref. [53]. One sees smaller rmsDs in Pred-2,
which means that one achieves more accurate predicted results if
one replaces experimental masses by our predicted results for those
with smaller uncertainties. See text for details.

Region Pred-1 Pred-2 Pred-3

A � 16 400 387 400
A � 60 398 385 391
A � 120 204 204 262

One sees that one obtains sizable improvements in doing so in
Table IV.

It is also worth addressing some cases for which previously
predicted masses in Ref. [30] exhibit large deviations from
recent experimental data compiled in Ref. [53]. In Fig. 4 of
Ref. [30], predicted masses for 85Mo, 87–89Tc, 123Ag, 140I,
222Po, 226−228Rn, 233,234Ra, and 235Ac have large deviations
from experimental data. For 85Mo, 87–89Tc, and 123Ag, the
results could be improved by using the new experimental data
in Refs. [51,54–56,63]; but for 140I, 222Po, 226–228Rn, 233,234Ra,
and 235Ac, the deviations are large due to the overestimation
of p-n interactions [30]. In this paper all these experimental
results are well reproduced, as shown in Fig. 1.

FIG. 1. (Color online) Deviations of our predicted masses (de-
noted by Mpred, solid blue circles, in unit of keV) from experimental
data Mexpt (open symbols). The red symbols are taken from Ref. [30]
(denoted by Fu Pred1, Fu Pred2). The experimental results include
Haettner 2011 [54], Weber 2008 [55], Sun 2008 [56], Neidherr
2009 [57], Chen in preparation [58], and Chen 2010 [59].
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FIG. 2. (Color online) Predicted one- and two-proton separation energies (Sp and S2p , in MeV) for N ∼ Z nuclei with proton number Z

from 20 to 28. In each of the blocks the first row corresponds to Sp predicted in this work, the second row correspond to Sp in Ref. [53], the
third row corresponds to S2p in this work, and the forth row corresponds to S2p in Ref. [53]. The predicted results and experimental data in
Ref. [53] are in normal and italic, respectively. The dashed line in each block are plotted to guide eyes. The line in red plots the one-proton drip
line predicted in this work.

We close this section by addressing why our extrapolation
approach works well in describing and predicting atomic
masses. First, the p-n interactions that we exploit include
1n-1p, 2n-1p, and 1n-2p types. On the one hand, these
interactions have been much less investigated than the 2n-
2p–type proton-neutron interactions (i.e., δV cal

2p-2n), and have
been much less known. On the other hand, they exhibit
remarkable systematics with respect to mass number A. In
particular, 1n-1p–type (generally speaking, ip-jn type with
ij odd) p-n interactions were found to have an odd-even
effect which is given dominantly by the pairing interaction
[30,38,64]. The results of δV cal

1p-1n for both even-A and odd-A
nuclei lie within a very compact envelope of points. Second,
most extrapolation approaches assume that the one- and
two-body interactions evolve very slowly and are thus assumed
to be constants in local regions. In our approach, we go
one step forward: we refine the systematics of two-body
interactions (here p-n interactions) by considering the shell
effect. These refined p-n interactions therefore provide us
with local mass relations which have smaller rmsD values.
Third, if the number of ways to predict the mass of a given
nucleus is more than one, our predicted value is given by
the average values of all predictions. Such an advantage
was first pointed out by Barea et al. in Refs. [24,25] for
the Garvey-Kelson relations. The reason why averaging the
predicted results reduces the deviations from experimental
values has not yet been well understood. One possible origin
might be that some of the white noises arising in many-body
correlations are canceled out with each other in averaging the

predictions and that such cancellation reduces the rmsD in our
predictions.

III. APPLICATION OF OUR PREDICTED MASSES

In this section we make use of these results to investigate
the proton and neutron drip lines, α-decay lifetimes for
heavy nuclei, and the impact on the astrophysical r-process
simulations.

A. Proton and neutron drip lines

We first come to the proton drip line. In Figs. 2 and 3
we present our predicted results for one- and two-proton
separation energies (Sp and S2p) of nuclei with proton number
from 20 to 38, close to the proton drip line. In each of the
blocks the first row correspond to Sp predicted in this work,
the second row corresponds to Sp in Ref. [53], the third row
corresponds to S2p in this work, and the fourth row corresponds
to S2p in Ref. [53]. The available experimental data compiled
in Ref. [53] are in italic. The line in red is our predicted
one-proton drip line. We list here a few nuclei with negative
[but very small in magnitude] one-proton separation energies:
39Sc, 38Ti, 42V, 41Cr, 50Co, 54,55Cu, 54,55Zn, 58,59Ge, 64As,
62,63Se, 68,69Br, 66,67Kr, 72,73Rb, and 70,71Sr. These nuclei are
good candidates for one-proton emissions.

In Figs. 2 and 3 one sees that the agreement between our
predicted results and those given in Ref. [53] is very good
in general. However, we should also point out a few cases
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FIG. 3. (Color online) Same as Fig. 2 except for proton number from 29 to 38. The unit of separation energies is MeV.

with sizable disagreements in comparison to other studies.
Reference [60] predicted Sp and S2p for proton-rich nuclei
in the region A = 41 to 75 based on Skyrme Hartree-Fock
calculations. It is noted that most of our predicted S2p are close
to those obtained in Ref. [60] except for 54Cu, 54–56Zn, and 58Ge
(deviations are lager than 500 keV). For 54Zn, our predicted
S2p = −2.49 (57) MeV, almost two times of that in Ref. [60]
[−1.33 (14) MeV], which is well consistent with experimental
data −1.48 (2) MeV [65] and −1.28 (21) MeV [66]. It would
be therefore worth investigating why extrapolations in this
work and Ref. [53] fail in predicting the mass of 54Zn in future
studies.

In Figs. 2 and 3 there are a few nuclei (with N = Z,Z − 1,

or Z − 2; e.g., 61
31Ga30) for which we are unable to predict

reasonably their Sp and/or S2p. We leave such Sp and S2p

blank in Figs. 2 and 3. This situation mainly originates
from the anomaly of δV1p-1n(Z,N) with Z = N . We discard
these exceptionally large δV1p-1n(Z,N) [for the same reason,
δV1p-2n(Z,N ) with Z = N or Z = N − 1, and δV2p-1n(Z,N )
with Z = N or Z = N + 1] in our predictions; see Ref. [30]
for more details. For a few cases (e.g., 58,59Zn), however, we
are able to obtain Sp and S2p by using our predicted binding
energies of their neighboring nuclei.

In Fig. 4 we show the one-proton-drip line nuclei with
20 � Z � 38, 51 � Z � 72, 73 � Z � 91, and 92 � Z �
106, and compare them with results of previous studies
(including experimental results) [60–62]. One sees that all
these models give similar predictions of the one-proton drip
line. This is partly due to the situation that current experimental
measurements are approaching the proton drip line in a number
of regions.

In Fig. 5 we plot our predicted one-neutron separation
energy versus neutron number N for Ca, Ni, Sn, and Tm
isotopes and compare with results from previous works. All
these studies predict similar patterns, although there are small
differences for large-N cases. Scrutinizing more carefully,
however, one sees that the results in this work and predictions
in Ref. [53] are in better agreement with experimental data
than other works [and our prediction goes further]. According
to this work, the one-neutron drip line nuclei for Ca, Ni, and
Sn isotopes with odd neutron numbers are 59Ca, 81Ni, and
153Sn, respectively; for the same isotopes with even neutron
numbers, our predicted one-neutron drip line nuclei are 70Ca,
94Ni, and 174Sn, respectively. In Ref. [67], 72Ca, 98Ni, and
176Sn are one-neutron drip line nuclei, based on the relativistic
continuum Hartree-Bogoliubov (RCHB) theory. According to
Ref. [68] 59Ca and 97Ni are one-neutron drip line nuclei.

In Figs. 6 and 7, we present the one- and two-neutron
separation energies (Sn and S2n) for neutron-drip nuclei with
proton number Z = 29 to 38. Our predicted neutron drip line
exhibits a drastic odd-even staggering (much more drastic
than that for proton drip line, as shown in Figs. 2 and 3).
For example, our predicted one-neutron drip line nucleus with
Z = 30 is 93Zn for odd N , and 104Zn for even N .

B. Transuranium nuclei

In this subsection we discuss the masses of transuranium
nuclei, their α-decay energies (Qα) and half-lives of α-decays.

We first come to our predicted masses. There are 134 nuclei
with available experimental data in this region, according to
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FIG. 4. (Color online) One-proton drip-line nuclei (i.e., those with positive Sp values which would be negative if one more proton were
added): (a) 20 � Z � 38, (b) 51 � Z � 72, (c) 73 � Z � 91, (d) 92 � Z � 106. The open squares in blue are our predicted results, others
are taken from previous studies: Brown 2002 [60], Sun 2011 [61], Lalazissis 2004 [62], and experimental (Expt) [53].

Ref. [53]. For these nuclei the rmsD of our predicted masses
with respect to the experimental results is only ∼50 keV.
Such small deviation demonstrates the high accuracy of our
evaluated p-n interactions in this region. Because experimental
masses in this region are relatively scarce, for those which are

not accessible in the experimental database, we assume that

−δV1p-1n(A) =
{

74 keV odd A

74 + 69861
A

keV even A,

30 40 50
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Audi 2011
FRDM
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This work
Expt.
Audi 2011
FRDM
DZ

45Ca ~ 73Ca

121Sn ~ 169Sn 174Tm ~ 214Tm

61Ni ~ 99Ni

FIG. 5. (Color online) One-neutron separation energies (Sn, in MeV) versus neutron number N : (a) Ca, (b) Ni, (c) Sn, (d) Tm. Our predicted
results are shown as open circles in blue, experimental results are taken from Ref. [53]. Results of other works (Audi 2011, FRDM, DZ) are
taken from Refs. [53], [6], and [4,5], respectively.
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FIG. 6. (Color online) One- and two-neutron separation energies (in MeV) of neutron-rich nuclei with odd neutron numbers, while proton
numbers Z change from 29 to 38. Similar to Figs. 2 and 3 in that each of the blocks in the first row corresponds to Sn predicted in this work,
the second row corresponds to Sn predicted in Ref. [53], the third row corresponds to S2n in this work, and the forth row corresponds to S2n in
Ref. [53]. The predicted results and experimental data of Ref. [53] are in normal and italic, respectively. The line in red plots the one-neutron
drip line predicted in this work.

and

−δV1p-2n(A) = 23040A−0.67 − 170 keV,
(4)

−δV2p-1n(A) = 26560A−0.72 − 92 keV.

The assumption for δV1p-1n(A) was given in Ref. [30], and
the assumption for δV1p-2n(A) and δV2p-1n(A) is given in
this work. Both assumptions are empirically obtained based
on systematics of proton-neutron interactions in terms of
mass number A. Assuming these proton-neutron interactions,
we predict atomic masses of nuclei in the transuranium
region.

We now switch to the α-decay energies Qα , defined by

Qα(Z,N ) = M(Z,N ) − M(Z − 2, N − 2) − M4He.

In Fig. 8, we present our predicted Qα (in MeV) for nuclei with
proton number Z from 90 to 106, with results of even-Z nuclei
in Fig. 8(a) and those of odd-Z nuclei in Fig. 8(b). One sees
our results are in very good agreement with experimental data
except for three nuclei: 263Sg and 256,257Db. The deviations of
our predicted Qα from experimental data are 0.3 ∼ 0.4 MeV
in these three exceptional cases.

Similar to Refs. [14,69], we use the Viola-Seaborg
formula [70]

log10 Tα = (aZ + b)Q−1/2
α + (cZ + d) + hlog, (5)

to evaluate α-decay half-lives Tα . Here a = 1.640 62,
b = −8.543 99, c = −0.194 30, and d = −33.9054. The
hindrance factors hlog are 0, 0.8937, 0.5720, and 0.9380 for
the nuclei with (even Z, even N ), (even Z, odd N ), (odd Z,
even N ), and (odd Z, odd N ), respectively.

In Table V, we compare our predicted results with previous
studies, for Qα (in MeV) and Tα (in s) of nuclei with proton
number Z from 102 to 106 and neutron number near N around
152. “Cal-1, 2, 3” correspond to the results predicted in this
work, Ref. [14], and Ref. [53], respectively. The experimental
value of Qα (Expt) are taken from Ref. [53]; Tα (Expt) are
taken from [71] except for 255,257Rf, which are based on
Refs. [72,73]. The values of Qα in this work are close to
experimental values or Audi’s predictions in Ref. [53]. Our
Tα(cal-1) reproduce the experimental values within a factor
of 25.

C. Impact on astrophysical r-process simulations

The rapid neutron capture (r) process [74–77] was proposed
half a century ago to explain the enrichment of elements
heavier than iron in the universe. This process is believed
to occur in an astrophysical environment of extremely high
neutron intensity and high temperature, and to run along the
very neutron-rich nuclei close to the drip line, most of which
will be not accessible experimentally in the near future. A
major source of the uncertainty in the r-process simulations
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FIG. 7. (Color online) Same as Fig. 6 except for nuclei with even neutron numbers. The unit of Sn and S2n is MeV.

is the nuclear physics inputs employed. Encouraged by the
improved mass accuracy in this work, we investigate in
this subsection the impact of our predictions on r-process
simulations.
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FIG. 8. (Color online) The α-decay energies Qα (in MeV) for
nuclei with proton number Z from 90 to 106. (a) Qα for even-Z
nuclei, (b) Qα for odd-Z nuclei. Experimental data are based on the
database of Ref. [53].

Toward that goal, we employ a site-independent approach
developed based on the waiting-point approximation, namely,
the assumption of (n, γ ) � (γ, n) equilibrium. This model
is ideal for studying the sensitivity of nuclear physics input
in astrophysical simulations, and furthermore has also been
successfully applied to studies of r-process patterns for both
the solar system and metal-poor stars (see, e.g., Refs. [78–80]).

Under the assumption of (n, γ ) � (γ, n) equilibrium, the
abundance ratios of two isotopes are given by

Y (Z,A + 1)

Y (Z,A)
= nn

(
h2

2πmuκT

)3/2
G(Z,A + 1)

2G(Z,A)

×
(

A + 1

A

)3/2

exp

[
Sn(Z,A + 1)

κT

]
, (6)

where Y (Z,A) denotes the abundance of the nuclide (Z,A),
nn is the neutron density, T is the temperature of astrophysical
environment, Sn is the one-neutron separation energy, and
G(Z,A) is the partition function of nuclide (Z,A). h, κ ,
and mu are the Planck constant, Boltzmann constant, and
atomic mass unit, respectively. The knowledge of neutron
separation energies in the first-order approximation determines
the r-process path. For more details about the above model,
we refer the reader to Refs. [78,80].

Before we turn to the impact of our results on nucleosyn-
thesis, it is suggestive to look at our predicted Sn. Among all
predicted Sn of 6426 nuclei, about 1900 nuclei are relevant
for the astrophysical r process, and about 50% of these
relevant Sn are predicted with theoretical accuracies better
than 200 keV. The differences between such Sn and the
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TABLE V. Predicted and experimental α-decay energies Qα (in MeV) and half-lives Tα (in s) for nuclei with proton number Z = 102
to 106 and neutron number close to N = 152. “Cal-1,” “Cal-2,” and “Cal-3” represent the results of the present work, Ref. [14], and Audi’s
predictions in Ref. [53], respectively. Tα (Cal-1,-2,-3) are obtained by the Viola-Seaborg formula. The experimental data Qα (Expt) are obtained
from Ref. [53]; Tα (Expt) are taken from [71] except those for 255,257Rf, which are taken from Refs. [72,73].

Nucl. Qα (Cal-1) Qα (Cal-2) Qα (Cal-3) Qα (Expt) Tα (Cal-1) Tα (Cal-2) Tα (Cal-3) Tα (Expt)

248No 9.022 9.230 0.140 0.035
249No 8.916 9.170 2.252 0.410
250No 8.801 8.950 0.636 0.228
251No 8.696 8.643 8.751 10.498 15.3 0.916
252No 8.567 8.493 8.549 3.398 5.84 ≈3.64
253No 8.406 8.290 8.414 87.326 0.21 × 103

254No 8.238 8.096 8.226 40.099 0.122 × 103 0.567 × 102

255No 8.405 8.164 8.428 87.809 0.557 × 103 0.305 × 103

256No 8.590 8.238 8.581 2.878 40.1 ≈2.91
257No 8.440 8.066 8.477 67.710 0.121 × 104

251Lr 9.177 9.534 0.413 0.041
252Lr 9.096 9.160 1.651 1.072
253Lr 8.892 8.918 2.874 2.50 0.644
254Lr 8.831 8.816 10.233 23.7 17.105
255Lr 8.521 8.556 41.4 25.882
256Lr 8.595 8.811 55.5 11.783 31.765
257Lr 9.017 8.714 9.008 1.214 10.1 1.296 ≈0.646
258Lr 8.616 8.545 8.910 47.808 80.3 4.1-4.32
259Lr 8.383 8.584 1.160 × 102 26.006 7.949
253Rf 9.304 9.522 9.550 0.830 0.202 0.169 ≈0.26 × 10−1

254Rf 9.154 9.336 9.210 0.288 0.855 × 10−1 0.197
255Rf 9.081 9.140 9.055 3.694 2.47 3.154
256Rf 8.977 8.952 8.925 0.961 1.14 2.016
257Rf 9.080 9.071 9.083 3.701 3.95 5.34/4.43
258Rf 9.213 9.195 9.193 0.194 0.219 0.923 × 10−1

259Rf 9.028 9.130 5.30 2.644 3.04
260Rf 8.870 8.900 2.04 1.648
261Rf 8.702 8.648 53.2
255Db 9.808 9.420 0.035 0.406
256Db 9.762 9.550 9.336 0.108 0.408 2.5
257Db 9.508 9.407 9.206 0.230 0.443 1.53 ∼ 1.63
258Db 9.451 9.529 9.501 0.772 0.465 7.03
259Db 9.667 9.655 9.619 0.084 0.903 × 10−1 0.51
260Db 9.144 9.494 9.192 5.946 0.585 1.52 ∼ 1.68
261Db 9.054 9.337 9.218 4.752 0.699 1.547 1.8 ∼ 2.20
262Db 9.136 9.008 6.282 15.041
256Sg 10.282 0.120 × 10−2

257Sg 10.145 0.204 × 10−1

258Sg 9.743 9.867 9.670 0.300 × 10−1 0.139 × 10−1 0.473 × 10−1 >0.165 × 10−1

259Sg 9.794 9.991 9.821 0.171 0.509 × 10−1 0.644
260Sg 9.813 10.121 9.900 0.193 × 10−1 0.301 × 10−2 0.95 × 10−2

261Sg 9.773 9.961 9.714 0.194 0.611 × 10−1 ≈0.23
262Sg 9.810 9.600 0.197 × 10−1 0.739 × 10−1 >0.364 × 10−1

263Sg 9.751 9.648 9.403 0.223 0.428 1.0 ∼ 1.43

corresponding results of the Duflo-Zuker model [4,5] are
shown in Fig. 9. One sees notable differences around the
neutron magic number N = 126. More precisely, a relatively
smoother evolution of Sn toward the one-neutron drip line
for nuclei with N ∼ 126 is predicted in this work [also see
Fig. 5(d) for the Tm isotopes]. A similar trend also holds when
comparing with the FRDM model. Unquestionably, the differ-

ences are rooted in the long-range extrapolation of the shell
effect.

To illustrate the influence of our predicted Sn values on
the abundance of r-process nuclei, two simulations based
on different mass sets are performed under an astrophysical
condition with a constant neutron density of 1026 cm−3 and
a constant temperature of 1.5 × 109 K. In both simulations,
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FIG. 9. Difference between one-neutron separation energies pre-
dicted in this work and those in Duflo-Zuker model. In this
comparison, the corresponding separation energies are computed in
our approach with theoretical accuracies better than 200 keV.

the neutron irradiation time is fixed to 1.4 s. We note that
the astrophysical condition here is chosen to highlight the
nuclear mass impact in the resulting abundance curves, not
to reproduce the whole solar r-process distribution. The
results normalized to the solar-process abundance (empty
circles) at A = 130 are shown in Fig. 10. The blue-dashed
curve (marked by Duflo-Zuker) represents the result using
the Duflo-Zuker mass model [4,5]. The red-solid curve
(marked by Duflo-Zuker*) is the same as the blue-dashed one
except that we replace the corresponding Duflo-Zuker data
by our predicted Sn with theoretical errors below 200 keV.
The solar r-process abundances [81] are also displayed for
comparison.

In Fig. 10 one sees that, under the above astrophysical
condition, both simulations present similar results for mass
number less than 170. This is determined by the almost
identical r-process paths in this range. Furthermore, both cases
can reproduce generally the second and third abundance peaks
at A ∼ 130 and 195 in the solar r-process abundance curve.
However, they differ significantly in the absolute values around
the third peak in Fig. 10, where the abundances in the hybrid
case are reduced by more than one order of magnitude in
comparison with the Duflo-Zuker case. This discrepancy can
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FIG. 10. (Color online) r-process simulations (on a logarithmic
scale) calculated by using two mass sets (Duflo-Zuker and Duflo-
Zuker*) under an astrophysical condition with a constant neutron
density of 1026 cm−3 and a constant temperature of 1.5 × 109 K. The
neutron irradiation time in both simulations is fixed to 1.4 s. The
calculated values are normalized to the solar r-process abundance
(empty circles) at A = 130.

be easily traced back to the Sn differences around N = 126
in the two models as shown in Figs. 5(d) and 9. A smoother
evolution of Sn toward the neutron drip line for nuclei heavier
than Nd would result in two effects. First, the r-process path
runs about 1 to 3 atomic mass units closer to the stability line
(i.e., to nuclei with longer β-decay lifetime) when approaching
nuclei with N = 126. This eventually leads to a sharp drop in
abundances before the third peak, since the abundance flowing
from one isotopic chain to the next is governed by β decays.
Second, less materials are accumulated into the nuclei with
N = 126, which results in a less-pronounced peak compared
with the Duflo-Zuker case. Meanwhile, we notice that, by
using our predictions, the overall shape and position of the
third r-process abundance peaks can be better reproduced.

IV. SUMMARY AND CONCLUSIONS

In this paper we improve the accuracy of the description
and prediction of atomic masses by manipulating local
mass relations which connect with the proton-neutron (p-n)
interactions. Instead of considering various corrections
simultaneously in the evaluation of the proton-neutron
interactions, we focus on the shell correction (which is the
dominant correction among all) and optimize this term for
different shells. The uncertainties of our predicted results are
reduced substantially for nuclei with mass number A � 120.
Some of the previously predicted results which exhibit large
deviations [30] from the experimental database are now
satisfactorily obtained (see Fig. 1).

We discuss a few issues of interests by using our predicted
atomic masses: (1) We evaluate the separation energies for
one- and two-proton (neutron) emissions. In comparison with
experimental database, the rmsDs of our predicted Bpred, Spred

p ,
S

pred
n , S

pred
2p , and S

pred
2n with respect to experimental data are

improved to 89, 106, 112, 140, and 126 keV, respectively, for
nuclei with A � 60. We predict proton and neutron drip lines
for a number of regions in the nuclide chart and compare them
with several theoretical models. (2) We investigate α-decay
energies (Qα) of transuranium nuclei. For experimentally
known Qα , the rmsD of our predictions is only ∼50 keV
(although a very few cases have rmsD ∼ 0.3 to 0.4 MeV). By
using our predicted α-decay energies, we evaluate α-decay
lifetimes of these nuclei. (3) We investigate the nuclear mass
impact on the astrophysical r-process nucleosynthesis. By
using our predicted Sn (with theoretical errors below 200 keV),
the overall shape and position of the third r-process abundance
peaks can be better reproduced under the given conditions in
comparison with the Duflo-Zuker database [4,5], and a signif-
icant difference in abundances arises after mass number 170.
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APPENDIX: FORMULAS OF PREDICTING ONE- AND
TWO-NUCLEON SEPARATION ENERGIES

In this appendix we present the formulas of evaluating
Sp, Sn, S2p, and S2n. As for the formulas of predicting binding
energies, see Eqs. (9) and (10) of Ref. [30].

Spred
p (Z,N ) = Sp(Z,N − 1) + δV cal

1p-1n(Z,N ),

Spred
p (Z,N ) = Sp(Z,N + 1) − δV cal

1p-1n(Z,N + 1),

Spred
p (Z,N) = Sp(Z,N − 2) + δV cal

1p-2n(Z,N ),

Spred
p (Z,N) = Sp(Z,N + 2) − δV cal

1p-2n(Z,N + 2),

Spred
n (Z,N) = Sn(Z − 1, N) + δV cal

1p-1n(Z,N),

Spred
n (Z,N) = Sn(Z + 1, N) − δV cal

1p-1n(Z + 1, N ),

Spred
n (Z,N) = Sn(Z − 2, N) + δV cal

2p-1n(Z,N),

Spred
n (Z,N) = Sn(Z + 2, N) − δV cal

2p-1n(Z + 2, N ),

S
pred
2p (Z,N) = S2p(Z,N − 1) + δV cal

2p-1n(Z,N ),

S
pred
2p (Z,N) = S2p(Z,N + 1) − δV cal

2p-1n(Z,N + 1),

S
pred
2n (Z,N) = S2n(Z − 1, N ) + δV cal

1p-2n(Z,N ),

S
pred
2n (Z,N) = S2n(Z + 1, N ) − δV cal

1p-2n(Z + 1, N ).

[1] C. F. von Weizsäcker, Z. Phys. 96, 431 (1935).
[2] H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82

(1936).
[3] W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
[4] J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995).
[5] J. Duflo and A. P. Zuker, [http://amdc.in2p3.fr/web/dz.html].
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