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Nuclear mass predictions with a radial basis function approach
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With the help of the radial basis function (RBF) and the Garvey-Kelson relation, the accuracy and predictive
power of some global nuclear mass models are significantly improved. The rms deviation between predictions
from four models and 2149 known masses falls to ∼200 keV. The AME95-03 and AME03-Border tests show
that the RBF approach is a very useful tool for further improving the reliability of mass models. Simultaneously,
the differences from different model predictions for unknown masses are remarkably reduced and the isospin
symmetry is better represented when the RBF extrapolation is combined.
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Nuclear mass predictions and evaluations are of great
importance, not only for various applications, but also for the
testing and development of nuclear theory. The unmeasured
masses are usually predicted by using some global nuclear
mass models in which some physics are considered and
the model parameters are determined by the known masses
[1,2] or by adopting some local mass relations based on the
measured masses of its neighbors. Some global nuclear mass
models such as the finite-range droplet model (FRDM) [3],
the Weizsäcker-Skyrme (WS) mass model [4–6], the Hartree-
Fock-Bogoliubov (HFB) model [7], and the Duflo-Zuker (DZ)
mass model [8], successfully reproduce the measured masses
with accuracy at the level of 300–600 keV. However, the
divergence for describing the masses of the extremely neutron-
rich nuclei from these different global mass models indicates
that more physics and more information about nuclear force
should be considered in the models. The uncertainty in
nuclear force and the limiting of computational resources
cause great difficulties for further improving these available
global nuclear mass models. On the other hand, one could use
the local mass relations such as the isobaric multiplet mass
equation (IMME) [9], the Garvey-Kelson (GK) relations [10],
and the residual proton-neutron interactions [11–13] to give
predictions of unmeasured masses. It is found that when
these local mass relations are used to predict the masses
of nuclei in an iterative fashion, the intrinsic error grows
rapidly [14] due to the following: (1) The local mass relations
are just approximately satisfied in known masses and (2) the
previously predicted masses are used on each new iteration and
a systematic error accumulates (see Table I in Ref. [14] and
the expressions σpred in Ref. [13]). To improve the accuracy of
nuclear mass predictions, the systematics of the nuclear mass
surface is analyzed in the image reconstruction techniques
[15,16] based on the Fourier transform (CLEAN algorithm) by
combining some global nuclear mass models. Compared with
other local mass relations mentioned previously, the image
reconstruction techniques predict the mass of a unmeasured
nucleus by using many more known masses rather than just the
masses of its neighbors. Therefore, more information from the
experimental data could be involved for the mass predictions.

*wangning@gxnu.edu.cn

It is found that important improvements in the predictions
given by the different models were obtained with the CLEAN
reconstruction.

In this Rapid Communication, we attempt to propose a more
efficient systematic method based on the radial basis function
approach [17,18], together with the available nuclear mass
models, for further improving the nuclear mass predictions.
The mass predictions for unmeasured nuclei can be treated
as a problem of mass surface extrapolation from the scattered
experimental data. The most prominent global interpolation
and extrapolation scheme is the radial basis function (RBF)
approach that originates from Hardy’s multiquadric interpola-
tion [17]. As a powerful solution to the problem of scattered
data fitting, the radial basis function is widely applied in
surface reconstruction. The simplest form of the RBF solution
is written as S(x) = ∑m

i=1 wiφ(‖x − xi‖), where xi denotes the
points from measurement, wi is the weight of center xi , φ is the
basis function, ‖x‖ is the Euclidean norm, and m is the number
of the scattered data to be fitted. Given m samples (xi , fi), one
wishes to reconstruct the smooth function S(x) with S(xi) =
fi . The RBF weights wi are determined by the solution of
the linear system resulting from the interpolation condition.
Standard basis functions include the following: spline, φ(r) =
r , or φ(r) = r2 log(r); Gaussian, φ(r) = exp(−cr2), with c >

0; multiquadric, φ(r) = √
r2 + c2; and inverse multiquadric,

φ(r) = 1/
√

r2 + c2.
With the RBF approach, the difference R(N,Z) = Mexp −

Mth between the calculated masses Mth with global nuclear
mass models and the experimental data Mexp could be
reconstructed. Once the reconstructed function S(N,Z) is
obtained, the revised masses for unmeasured nuclei are given
by MRBF

th = Mth + S. Here we perform three tests for each
mass model, and for all tests we only consider nuclei with
neutron number N � 8 and proton number Z � 8. The first
one is that we reconstruct the function S(N,Z) for a selected
known nucleus based on other known masses, together with a
certain global mass model. In other words, we take the 2148
known masses of nuclei for training the RBF (m = 2148) and
use the remaining one nucleus from the 2149 nuclei in the
atomic mass evaluation of 2003 (AME2003) [2] as a test. The
corresponding results from this kind of cross validation will
be shown in Fig. 1 and Table I. The second one is that we take
the masses in AME1995 [1] for training the RBF (m = 1760)
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FIG. 1. (Color online) Difference between predicted masses with
the WS3 model and the experimental data. The solid circles in (a)
denote the reconstructed function S(N,Z) from the radial basis
function with φ = r . The crosses in (b) denote the corresponding
deviations from data when the function S is added to the masses with
WS3.

and predict the 389 “new” masses in AME2003, and the
corresponding results will be listed in Table II. The third one
is that we take the masses of nuclei near the β-stability line
(nuclei with neutron separation energy of 5 � Sn � 12 MeV)
for training the RBF (m = 1700) and predict the remaining
449 masses of nuclei approaching drip lines, and the results
will be shown in Table III. We find that the mass deviation
R(N,Z) can be reconstructed relatively better with φ(r) = r ,
i.e., a natural spline function. Therefore, we adopt the basis
function φ(r) = r in the calculations.

In Fig. 1(a), we show the differences between the calculated
masses with the WS3 model [6] and the experimental data [2]
(gray squares). The reconstructed function S (solid circles) is
also shown for comparison. One sees that the RBF reproduces
the differences Mexp − Mth with high quality and has good
approximation properties. With the approximating function
S(N,Z), the differences between the predicted masses and the
experimental data are dramatically reduced [see the crosses
in Fig. 1(b)]. In Table I, we list the rms deviations between
the 2149 know masses [2] and predictions from five mass
models: WS3 [6], DZ28 [8], FRDM [3], HFB17 [7], and
WS* [5]. The column Model+RBF means the reconstructed
function S with the RBF approach is added to the calculated
masses with the five models. The column Model+RBF+GK12

TABLE I. rms σ deviations between 2149 know masses [2] and
predictions of five models (in keV). Here, to predict the mass of a
nucleus in AME2003, we take the remaining 2148 known masses for
training the RBF (m = 2148)—see the text for details.

Model Model+RBF Model+RBF+GK12

WS3 [6] 336 223 184
DZ28 [8] 360 227 187
FRDM [3] 656 283 216
HFB17 [7] 581 390 313
WS* [5] 441 256 217

TABLE II. rms deviations with respect to 389 “new” masses in
AME2003 based on the mass models and the measured masses in
AME1995 (m = 1760) for training the RBF (in keV).

Model Model+RBF

WS3 378 311
DZ28 430 341
FRDM 536 351
HFB17 519 380
WS* 517 358

denotes that the Garvey-Kelson relation [10], which contains
12 estimates for a nucleus with the corresponding values of
its 21 neighbors, is also adopted for further improving the
smoothness of the function S(N,Z). With the help of the
RBF and the GK relation, the rms deviations from the 2149
nuclei are reduced sharply for all five models, and the results
from four models reach ∼200 keV. In Fig. 2, we show the rms
deviations obtained with the first test for WS3 but as a function
of average neutron-separation energy of nuclei. With the RBF
approach, the rms deviations are reduced obviously, especially
for nuclei approaching the drip lines.

The second test, i.e., AME95-03 test, is usually used to
check the predictive power of mass models. The crosses in
Fig. 3 denote the positions of nuclei to be predicted in the
AME95-03 test. Table II lists the rms deviations with respect
to 389 “new” masses in AME2003 based on the five mass
models and the measured masses in AME1995 for training.
The reduction of rms deviation is 18% for the WS3 model, 21%
for the DZ28 model, 35% for the FRDM, 27% for the HFB17
model, and 31% for the WS* model, respectively, when the
RBF approach is combined. We note that the reduction of
the rms deviation (N,Z � 8) is ∼12% with the CLEAN
reconstruction [16] combining the 31-parameter Duflo-Zuker
(DZ31) mass model [19] in this test. The corresponding result
with the RBF approach remarkably reaches ∼23%. Combining
the liquid drop model (LDM) mentioned in Ref. [15], the
rms reduction in the AME95-03 test reaches ∼54% with the
CLEAN reconstruction and ∼72% with the RBF approach,
respectively. It seems that the radial basis function approach is
a more efficient tool for improving the accuracy of nuclear
mass predictions. Furthermore, in the CLEAN algorithm
one needs to perform a series of iterations until a given
stopping criteria (σ = 100 keV, for example) which is not
required in the RBF approach. In the RBF approach, one just

TABLE III. rms deviations (in keV) from 449 masses of nuclei
approaching AME03-Border based on the mass models and the
known masses of nuclei with a neutron separation energy of 5 �
Sn � 12 MeV (m = 1700) for training the RBF.

Model Model+RBF

WS3 423 367
DZ28 491 392
FRDM 855 582
HFB17 730 575
WS* 591 417
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FIG. 2. (Color online) rms deviation with respect to the masses
as a function of average neutron-separation energy of nuclei. The
shades present the average standard deviation errors of the measured
masses [2].

needs to calculate the weights wi , which can be estimated
using the matrix methods of linear least squares, because the
approximating function S(N,Z) is linear in the weights.

In Table III, we list the rms deviations with respect to
the 449 masses of nuclei approaching AME03-Border based
on the five models and the known masses of nuclei with a
neutron separation energy of 5 � Sn � 12 MeV in AME2003
for training. The definition of the AME03-Border test here is
slightly different from that in Ref. [16] (see the squares in
Fig. 3). The rms deviation is reduced by 20% for the DZ28
model, 21% for the HFB17 model, 29% for the WS* model,
and 32% for the FRDM, respectively. For the WS3 model, we
obtain a reduction of 13%. These calculations indicate that the
reliability of the available mass models can be significantly
improved by combining the RBF approach. With the GK
relation, the results in Tables II and III can be further improved
as do those in Table I, because the GK relation is also well

FIG. 3. (Color online) Positions of nuclei predicted in the
AME95-03 test (crosses) and the AME03-Border test (squares).

FIG. 4. (Color online) (a) Difference between the calculated
masses with the mass model WS3 and those with DZ28 for Sn
isotopes. The solid circles denote the corresponding results when the
RBF approach is combined. (b) Difference of the calculated masses
with the mass models from the results through fitting the experimental
masses with a parabola for isobaric nuclei of A = 113. The squares
denote the deviations from the experimental data, i.e., Mexp − Mfit.
The solid and the dashed-dotted curve denote the results with WS3
and DZ28, respectively.

satisfied at the mass region with nuclei far from the β-stability
line [10].

In addition, we study the predictions from these mass mod-
els for unmeasured nuclei. It is known that the predictions from
different models toward the neutron-drip line tend to diverge.
As an example, the difference �M = M(DZ28) − M(WS3)
between the calculated masses with the DZ28 model and those
with the WS3 model for Sn isotopes is shown in Fig. 4(a) (open
circles) as a function of neutron numbers. For known nuclei,
the differences between the calculated masses from the two
models are small. However, the deviations reach a few MeV for
nuclei approaching the drip lines. The solid circles in Fig. 4(a)
denote the corresponding results when the RBF approach is
combined. The differences between the predicted masses from
the two models are reduced by ∼1 MeV. Simultaneously, we

TABLE IV. rms deviations (in MeV) with respect to the evaluated
masses in AME2003 [2] (marked by #) and those in Ref. [13]
for nuclei with Z � 102 based on the residual proton-neutron
interactions. Here the RBF approach (m = 2149) and the GK relation
are involved in the mass predictions with the five models. n1 and n2

denote the number of evaluated masses taken from AME2003 and
Ref. [13] for the rms calculations, respectively.

n1 AME2003 [2] n2 δV1p1n [13]

WS3 935 0.629 459 0.479
DZ28 935 1.058 459 0.470
FRDM 935 0.784 459 0.597
HFB17 892 0.743 459 0.706
WS* 935 0.626 459 0.498
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list in Table IV the rms deviations with respect to the evaluated
masses in AME2003 [2] (marked by #) and those in Ref. [13]
based on the residual proton-neutron interactions. We find
that when the RBF approach (m = 2149) and the GK relation
are involved in the mass predictions, the rms deviations with
respect to the evaluated masses in AME2003 are remarkably
reduced. The rms reductions reach 23% for the WS3 model,
34% for the DZ28 model, 38% for the FRDM, 23% for the
HFB17 model, and 31% for the WS* model, respectively.
The rms deviations from the evaluated masses based on the
residual proton-neutron interactions [13] are also significantly
reduced, with a rms reduction of 38% for the WS3 model,
42% for the DZ28 model, 44% for the FRDM, 33% for the
HFB17 model, and 46% for the WS* model, respectively.
These calculations also demonstrate that the differences from
these different models can be remarkably reduced when the
RBF approach and the GK relation are applied.

In Fig. 4(b) we show the difference �M = Mth − Mfit

between the predicted masses with models and the results
by fitting the known masses with a parabola for a series
of isobaric nuclei with A = 113. According to the isobaric
multiplet mass equation (IMME), which is a basic prediction
leading from the isospin concept, the masses of isobaric
nuclei can be expressed as Mfit(A, Tz) = a + bTz + cT 2

z , with
Tz = (N − Z)/2. One sees from Fig. 4(b) that the deviation
Mth − Mfit is quite large for nuclei approaching the neutron
drip line. When the RBF approach is combined, the deviations
are slightly reduced, which indicates that the isospin symmetry
is relatively better represented with the help of the RBF
extrapolation. Simultaneously, we study the b coefficients in
the IMME with different models. The b coefficients in the

IMME for nuclei can be extracted from the binding energies of
pairs of mirror nuclei b = BE(T =Tz)−BE(T =−Tz)

2T
with the isospin

T = |N − Z|/2. We calculate rms deviations between the
experimental b coefficients in the IMME for 62 pairs of mirror
nuclei and the predicted ones with the models. When the RBF
approach and the GK relation are used, the rms deviations
from the experimental b coefficients are significantly reduced
from 159 to 97 keV for the WS3 model, from 274 to
144 keV for the FRDM, and from 180 to 91 keV for the
WS* model, respectively. It implies that the isospin symmetry
is an important concept for constraining the nuclear mass
models.

In summary, we proposed an efficient systematic method
based on the radial basis function (RBF) approach for
improving the accuracy and predictive power of global nuclear
mass models. With the help of the RBF and the Garvey-Kelson
relation, the rms deviation between the predictions from four
mass models and the 2149 known masses falls to ∼200 keV.
The AME95-03 and AME03-Border tests show that the RBF
approach provides us with a very useful tool, which is even
more efficient than the CLEAN algorithm, for further reducing
the rms deviation from the experimental data. In addition, with
the RBF extrapolation, the divergence from different model
predictions for unknown masses is remarkably improved, and
the isospin symmetry is better represented.
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