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Nuclear symmetry energy at subnormal densities from measured nuclear masses
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The symmetry energy coefficients for nuclei with mass number A = 20–250 are extracted from more than
2000 measured nuclear masses. With the semiempirical connection between the symmetry energy coefficients
of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence
of the symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those
extracted from other methods.
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I. INTRODUCTION

The nuclear symmetry energy esym(ρ), which represents the
energy cost per nucleon to convert all the protons to neutrons
in symmetric nuclear matter, has attracted lots of attention in
astrophysics and nuclear physics, because it intimately relates
to a wealth of astrophysical phenomena, the structure character
of nuclei, and the dynamical process of nuclear reactions. The
density dependence is a key point in the study of symmetry
energy. Many theoretical and experimental efforts have been
paid to constrain the density dependence of the symmetry
energy [1–3]. Presently, some constraints on the symmetry
energy at subnormal densities have been made from the double
n/p ratio and isospin diffusion in intermediate energy heavy-
ion collisions of isospin asymmetric nuclei [1,2,4] and from
the nuclear properties such as the thickness of the neutron skin
and the binding energy of finite nuclei [5–8]. The uncertainty
of the symmetry energy coefficient and the density dependence
of symmetry energy at subnormal densities is still large, and
more study is still needed.

We try in this work to constrain the symmetry energy
from more than 2000 precisely measured nuclear masses. By
directly fitting the measured nuclear masses with the liquid
drop mass formula, one can obtain the symmetry energy
coefficients of nuclei in which both volume and surface terms
are included [9–11]. It is known that the symmetry energy
coefficients of finite nuclei asym are considerably smaller than
that of the infinite nuclear matter due to the influence of the
surface region of nuclei. A semiempirical connection between
the symmetry energy of nuclear matter at reference density
and the properties of finite nuclei was proposed in Ref. [12].
More recently, the relation asym(A) = esym(ρA) between the
symmetry energy coefficients of finite nuclei and the symmetry
energy of nuclear matter at reference density was proposed
in Ref. [5]. For 208Pb, the reference density has a value of
about ρ208 � 0.1 fm−3. The relation provides a possible way
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to explore the property of nuclear matter from the property
of finite nuclei. Combining this relation and the symmetry
energy coefficients of finite nuclei extracted from the measured
nuclear masses, we investigate the density dependence of
nuclear symmetry energy at subnormal densities.

The paper is organized as follows. In Sec. II, we determine
the symmetry energy coefficients for nuclei with mass number
A = 20–250 by analyzing the measured nuclear masses [13].
In Sec. III, we constrain the nuclear symmetry energy at
subnormal density with the relation asym(A) = esym(ρA), and
we compare our results with those obtained by using other ap-
proaches. The reference density as a function of nuclear mass
number is also deduced. A short summary is given in Sec. IV.

II. SYMMETRY ENERGY COEFFICIENTS
OF FINITE NUCLEI

In Ref. [14], the symmetry energy coefficients of finite
nuclei were studied. The energy per particle e(A, I ) of a
nucleus can be expressed as a function of mass number A

and isospin asymmetry I = (N − Z)/A according to the
Weizsäcker nuclear energy formula:

e(A, I ) = av + asA
−1/3 + eCoul(A, I ) + asym(A)I 2

+ apA−3/2�np + ew, (1)

with

�np =

⎧⎪⎨
⎪⎩

1 for even-even nuclei,

0 for odd-A nuclei,

−1 for odd-odd nuclei.

(2)

Here a small correction term (i.e., the Wigner term ew) is
introduced for a better description of the systematic behavior
in the symmetry energy coefficients of nuclei. The av , as ,
and ap denote the coefficients of the volume, the surface,
and the pairing term, respectively. Subtracting the Coulomb
term and the Wigner term from the energy per particle, one
obtains

em(A, I ) = e(A, I ) − eCoul(A, I ) − ew

= e0(A) + asym(A)I 2. (3)
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FIG. 1. (Color online) (a) Value of em as a function of isospin asymmetry for selected series of isobaric nuclei. The solid circles and the
solid curves denote the experimental data and the results by fitting the experimental data, respectively. (b) Symmetry energy coefficients of
nuclei as a function of mass number. The solid circles denote the extracted results from the measured nuclear masses. The shading denotes the
results of Danielewicz et al. [9]. The vertical short dashes denote the results when the shell corrections of nuclei from Ref. [10] are removed
from the measured energy per particle. The (red) curves denote the results by fitting the circles.

Here we assume that the av and as terms are independent
of isospin asymmetry and can be rewritten as e0(A). For the
Coulomb energy, we take the same form as in Ref. [14]. For
the Wigner term ew = Ew/A, we take the form as in Ref. [15],

Ew = −C0 exp(−W |I |/C0), (4)

with two parameters C0 = −10 MeV and W = 42 MeV, which
is a direct consequence of the independent-particle model.
We checked that the obtained symmetry energy coefficients
of finite nuclei do not change appreciatively by varying the
parameter W in a reasonable region of 42–47 MeV [16].

Now we can take e0(A) and asym(A) as parameters and
perform a two-parameter parabola fitting to the em(A, I )
for each series nuclei with the same mass number A. The
experimental e(A, I ) data are taken from the mass table
AME2003 [13]. For nuclei with even mass number, only
even-even nuclei are taken into account in our calculations to
consider the pairing effects. All available isobaric nuclei with
mass number A = 20–250 are considered in the calculations.
Figure 1(a) shows the values of em as a function of isospin
asymmetry for a series of isobaric nuclei with A = 21, 40,
77, 116, and 208 as examples. The solid circles and the
solid curves denote the experimental data and the results with
two-parameter parabola fitting, respectively. The curvature
of each curve gives the corresponding symmetry energy
coefficient asym(A) of the nuclei with mass number A. The
extracted symmetry energy coefficients of finite nuclei as a
function of mass number are shown in Fig. 1(b). The solid
circles denote the extracted asym(A) from the measured nuclear
masses. The shading denotes the results of Danielewicz and
Lee [9]. The vertical short dashes denote the results when the
shell corrections of nuclei [10] are removed from the measured
values of energy per particle. In the region A < 120, the values
of asym(A) obtained in our approach show some oscillations
and fluctuations. For heavy nuclei, our results of asym(A)
are comparable with those of Danielewicz and Lee. When
the shell corrections are taken into account, the fluctuations

in the extracted asym(A) are reduced effectively. The mass
dependence of the symmetry energy coefficients of nuclei is
written by Danielewicz and Lee [9] as

asym(A) = S0(1 + κA−1/3)−1, (5)

where S0 is the volume symmetry energy coefficient of the
nuclei [i.e. the nuclear symmetry energy at normal density
esym(ρ0)] and κ is the ratio of the surface symmetry coefficient
to the volume symmetry coefficient. By performing a two-
parameter fitting to the asym(A) obtained previously [i.e., the
solid circles in Fig. 1(b)], we can obtain the values of S0

and κ . With 95% confidence intervals of S0 and κ , we obtain
S0 = 31.1 ± 1.7 MeV and κ = 2.31 ± 0.38, respectively. The
results of fitting the circles are shown in Fig. 1(b) by the (red)
curves. The obtained value of S0 is in good agreement with
the range of S0 = 30.2–33.8 MeV given by the pygmy dipole
resonance (PDR) data [6].

III. NUCLEAR SYMMETRY ENERGY
AT SUBNORMAL DENSITY

Now let us turn to study the density dependence of nuclear
symmetry energy at subnormal densities. In experiments,
recent research in intermediate energy heavy-ion collisions is
consistent with a dependence at subnormal densities [2,4,17]:

esym(ρ) = S0(ρ/ρ0)γ . (6)

With the relation

esym(ρA) = asym(A) (7)

proposed by Centelles et al. [5], one can obtain the sym-
metry energy for nuclear matter from the symmetry energy
coefficients of finite nuclei. The ρA is the reference density
in nuclear matter to make the equation hold [5,12], which is
significantly smaller than the saturation density because of the
surface region of the nuclear density profile. It is known that
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FIG. 2. (Color online) Reference density ρA as a function of mass
number. The solid and dashed curves denote the results in this work
and those from Ref. [5], respectively.

the relation of Eq. (7) is hold at ρA � 0.1 fm−3 for 208Pb from
various effective interactions [5,18]. Now inserting Eqs. (5)
and (6) into Eq. (7), one obtains

(ρA/ρ0)γ = (1 + κA−1/3)−1. (8)

Applying ρ208 = 0.1 fm−3 [5,12,18] and the confidence inter-
val κ = 2.31 ± 0.38 determined by asym(A) in the previous
section, we obtain the following range of γ :

γ = 0.7 ± 0.1. (9)

With the relation of Eq. (8), one can obtain the expression
of the reference density ρA for a nucleus with mass A; that is,

ρA = ρ0/(1 + κA−1/3)1/γ . (10)

The value of ρA decreases with the decrease of nuclear
size because of the enhanced surface effects in light nuclei.
Moreover, Eq. (10) indicates that the reference density ρA

depends on the ratio κ and the parameter γ , which describes
the stiffness of the symmetry energy. Figure 2 shows the
reference densities ρA as a function of nuclear mass number.
The black solid curve denotes the results of Eq. (10) with
ρ0 = 0.16 fm−3, κ = 2.31, and γ = 0.7. From the figure,
one can see that the reference densities for finite nuclei
with A = 20–250 cover the densities in the range 0.42ρ0 �
ρ � 0.64ρ0. The results from the parametrized expression of
ρA = ρ0 − ρ0/(1 + cA1/3), proposed by Centelles et al. [5]
with various effective interactions, are also shown in the figure
with the (red) dashed curve for comparison. One can see
that the reference densities obtained from the two different
approaches are in good agreement with each other. The validity
of the parametrized expression proposed by Centelles et al.
has been tested in the mass region 40 � A � 208 [5]. For the
mass region A < 40 and A > 208, the two models give similar
extrapolation. From Fig. 2, one sees that for heavy nuclei the
reference densities change slowly with the mass number and
are close to 0.1 fm−3, whereas for light nuclei the reference
densities fall very fast with decrease of mass. Therefore, it is
better to apply relation (7) by choosing the symmetry energy
coefficient of heavy nuclei to relate the symmetry energy for
nuclear matter at the reference density.

Figure 3 shows the symmetry energy of nuclear matter as a
function of ρ/ρ0 obtained in this work and the comparison

FIG. 3. (Color online) Density dependence of the nuclear sym-
metry energy with different methods. The two vertical dashed lines
give the corresponding density region of nuclei with A = 20–250.
The gray shading denotes the region with S0 = 31.1 ± 1.7 MeV and
γ = 0.7 ± 0.1, using the form esym(ρ) = S0(ρ/ρ0)γ .

with the results obtained by other methods. The (green)
solid curve corresponds to the symmetry energy calculated
with esym(ρ) = 31.1(ρ/ρ0)0.7, in which S0 = 31.1 MeV is
the favorite value from asym(A) and γ = 0.7 is obtained
from ρA. The two vertical dashed lines show the corre-
sponding density region 0.42ρ0 � ρ � 0.64ρ0 of nuclei with
A = 20–250. One should note that the results in this work for
density regions (ρ < 0.5ρ0 and ρ > 0.63ρ0, corresponding
to A < 40 and A > 208, respectively) represent an extrap-
olation. The (orange) dashed curve denotes the symmetry
energy constrained by comparing the measurements of the
isospin diffusion and the neutron-to-proton double ratio in
124,112Sn +124,112 Sn reactions with the calculations of an
improved quantum-molecular dynamics model (ImQMD),
where esym(ρ) = 12.5(ρ/ρ0)2/3 + 17.6(ρ/ρ0)γ with γ = 0.7
[2]. The dot-dashed curve denotes the symmetry energy as
esym(ρ) = 31.6(ρ/ρ0)γ with γ = 0.69, obtained by the com-
parison between National Superconducting Cyclotron Lab-
oratory at Michigan State University (NSCL-MSU) isospin
diffusion data and the IBUU04 [4]. The (blue) solid squares
give the mapped esym(ρ) from the correlation between temper-
ature, excitation energy, density, and the isoscaling parameter
[19,20]. The (red) solid circle gives the constrained esym(0.1)
from the excitation energy of giant dipole resonance (GDR)
in 208Pb [18]. The gray shading in Fig. 3 is bounded by
S0 = 31.1 ± 1.7 MeV and γ = 0.7 ± 0.1. One can see from
Fig. 3 that the obtained nuclear symmetry energy in this work
is located between the results of ImQMD and IBUU04. The
gray area is consistent with the results from ImQMD, IBUU04,
GDR, and the mapped data from the isoscaling parameter in
Refs. [19,20] at subnormal densities.

TABLE I. Range of slope parameter L for different cases of S0.

S0 (MeV) Lmin (MeV) Lmax (MeV) L (MeV)

29.4 52.9 70.6 61.7 ± 8.8
31.1 56 74.6 65.3 ± 9.3
32.8 59.1 78.7 68.9 ± 9.8

064306-3



MIN LIU, NING WANG, ZHU-XIA LI, AND FENG-SHOU ZHANG PHYSICAL REVIEW C 82, 064306 (2010)

FIG. 4. (Color online) (a) Range of slope pa-
rameter L determined by S0 = 31.1 ± 1.7 MeV
and γ = 0.7 ± 0.1 in this work. (b) Range of
slope parameter L determined from different
observables. The results are taken from Ref. [21]
with PDR, from Ref. [22] with neutron skin
thickness, and from Ref. [2] with isospin dif-
fusion.

On the basis of the extracted value of S0 and the
extrapolated nuclear symmetry energies at densities around
the normal density, we further study the slope parameter L =
3ρ0

∂esym(ρ)
∂ρ

|ρ0 , which is an effective quantity to characterize the
density dependence of symmetry energy. From the previously
obtained range γ = 0.7 ± 0.1 and the value of S0, the value of
L can be obtained directly. The gray shading in Fig. 4(a) shows
the area of L determined by S0 = 31.1 ± 1.7 MeV and γ =
0.7 ± 0.1. The range of L for S0 = 31.1 MeV is shown by the
solid line. The dashed and the dot-dot-dashed lines correspond
to the cases of S0 = 29.4 and 32.8 MeV, respectively, which
are the boundaries of the confidence interval of S0. The
values of L for the three cases are listed in Table I. From the
calculations, we obtain the largest range of the slope parameter,
53 � L � 79 MeV, for S0 = 31.1 ± 1.7 MeV. To compare
with the values of L obtained from other methods, we show
the range of slope parameter L determined in this work and
those from other recent analyses with different observables
in Fig. 4(b). The black solid line is the result from the
measured nuclear masses in this work. The result from isospin
diffusion is obtained from Ref. [2] with S0 = 30.1 MeV and
γ = 0.4–1.05. The result from PDR is taken from Ref. [21]
with L = 64.8 ± 15.7 MeV and S0 = 32.3 ± 1.3 MeV. The
result from the neutron skin thickness is taken from Ref. [22].
The range of the values of L obtained in this work is consistent
with those obtained from other analyses.

IV. SUMMARY

The symmetry energy coefficients asym(A) for nuclei with
mass numbers A = 20–250 were determined from more
than 2000 precisely measured nuclear masses based on the
liquid drop mass formula with the contribution of the Wigner
term. By taking asym(A) = S0(1 + κA−1/3)−1, we obtain the

95% confidence intervals of the volume symmetry energy
coefficient S0 = 31.1 ± 1.7 MeV and the surface-to-volume
symmetry-coefficient ratio κ = 2.31 ± 0.38 from the deter-
mined asym(A).

On the basis of the relation between the nuclear sym-
metry energy at reference density and the symmetry energy
coefficients of nuclei esym(ρA) = asym(A), we investigated
the nuclear symmetry energy at a narrow subnormal density
range, 0.42ρ0 � ρ � 0.64ρ0. Applying the reference density
for 208Pb, ρ208 � 0.1 fm−3, and the symmetry parameter ratio
κ = 2.31 ± 0.38, we determined the range of γ (i.e., γ =
0.7 ± 0.1) by inserting the nuclear symmetry energy esym(ρ) =
S0(ρ/ρ0)γ and the symmetry energy coefficients of nuclei
asym(A) = S0(1 + κA−1/3)1/γ into the relation esym(ρA) =
asym(A). The range of γ obtained in this way is independent of
the nuclear symmetry energy coefficient S0. Simultaneously,
we deduced the mass dependence of the reference density ρA,
which explicitly depends on κ and γ . Finally, the range of
the slope parameter L of nuclear symmetry energy at normal
density was determined to be 53 � L � 79 MeV, based on the
extracted value of S0 and the extrapolated nuclear symmetry
energies at densities around the normal density. The constraint
on the nuclear symmetry energy at subnormal density provided
in this work is in good agreement with the results from other
recent analyses.
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