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Mass and isospin dependence of symmetry energy coefficients of finite nuclei
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The mass and isospin dependence of symmetry energy coefficients asym of finite nuclei are investigated with the
measured nuclear masses incorporating the liquid drop mass formula. The enhanced asym for nearly symmetric
nuclei are observed. To describe the mass and isospin dependence of asym, a modified formula based on the
conventional surface-symmetry term is proposed and the corresponding rms deviation of nuclear masses is
checked.
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The study of nuclear symmetry energy has attracted great
attention in recent years both theoretically and experimentally
[1–5]. The mass dependence of symmetry energy coefficients
are clearly observed and the obtained symmetry energy
coefficients of finite nuclei are considerably smaller than the
symmetry energy coefficient of nuclear matter at saturation
density. The symmetry energy coefficient of finite nuclei is
usually extracted by directly fitting the measured nuclear
masses with different versions of the liquid drop mass formula.
Some different forms for describing the mass dependence of
symmetry energy coefficients of finite nuclei, which divide the
symmetry energy of a nucleus into the volume and surface
contributions, were proposed in Refs. [3–5]. The volume
symmetry energy of the nucleus corresponds to that of nuclear
matter at saturation density. In this work, we investigate the
symmetry energy coefficients of nuclei, especially the isospin
dependence of the symmetry energy coefficient, based on the
more than 2000 precisely measured nuclear masses [6].

We start with the well-known liquid drop formula. The
liquid drop energy of a nucleus is described by a Bethe-
Weizsäcker mass formula [7]

ELD(A,Z) = avA + asA
2/3 + ECoul + asymI 2A, (1)

neglecting the pairing term, where I = (N − Z)/A denotes
the isospin asymmetry. The symmetry energy coefficient asym

is conventionally expressed as a function of mass number A

[3]. The Coulomb energy is written as

ECoul = ac

Z(Z − 1)

A1/3
(1 − 0.76Z−2/3), (2)

with the coefficient ac = 0.71 MeV. Inserting Eq. (2) into
Eq. (1) and using the relation Z = A

2 (1 − I ), the liquid
drop energy per particle εLD = ELD/A can be expressed as
a function of mass number A and isospin asymmetry I .
Performing a partial derivative of εLD(A, I ) with respect to
the isospin asymmetry I , the symmetry energy coefficient can
be expressed as

asym = a(0)
sym − I

2

∂asym

∂I
= a(0)

sym + a(1)
sym + · · · , (3)
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with

a(0)
sym =

(
∂εLD(A, I )

∂I
− 1

A

∂ECoul(A, I )

∂I

)/
(2I ). (4)

Omitting the microscopic shell and pairing corrections and the
corrections from nuclear deformation, the values of ∂εLD(A,I )

∂I

can be obtained from the measured energy per particle εexp [6],

∂εLD(A, I )

∂I
≈ εexp(A, I2) − εexp(A, I1)

I2 − I1
. (5)

Where I1 and I2 denote the isospin asymmetry of nuclei
(A,Z − �Z) and (A,Z + �Z), respectively. We take �Z =
1 in this work. Through iterations to asym in Eq. (3),

asym = a(0)
sym − I

2

∂

∂I

[
a(0)

sym − I

2

∂

∂I

×
(

a(0)
sym − I

2

∂

∂I

[
a(0)

sym − · · · ]
)]

, (6)

one can obtain the expression of a(1)
sym, which includes all terms

with ∂
∂I

a(0)
sym in Eq. (6),

a(1)
sym =

∞∑
n=1

(
−1

2

)n

I
∂a(0)

sym

∂I
= −I

3

∂a(0)
sym

∂I
. (7)

In Fig. 1(a), we show the extracted symmetry energy
coefficients of nuclei as a function of nuclear mass number.
The crosses and the short dashes denote the extracted a(0)

sym

and a(1)
sym terms of the symmetry energy coefficients from the

measured nuclear masses, respectively. One can see that the
contribution of the a(1)

sym term is much smaller than that of a(0)
sym

term for most nuclei since I is a small quantity. The relatively
large fluctuations in a(1)

sym for heavy nuclei are mainly caused by
the shell effects. The shades denote the results of Danielewicz
et al. [3]

asym = csym[1 + κA−1/3]−1. (8)

The extracted a(0)
sym term of the symmetry energy coefficients

for heavy nuclei are comparable to the results of Danielewicz
et al. For intermediate and light nuclei, there exist obvious
oscillations and fluctuations in the extracted a(0)

sym, which
are probably caused by the shell effects and other nuclear
structure effects. In the region A < 120, the extracted a(0)

sym
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FIG. 1. (Color online) Symmetry-energy coefficients of nuclei as a function of (a) nuclear mass number and (b) of isospin asymmetry. The
shades denote the results of Danielewicz et al. [3]. The crosses and the short dashes denote the extracted a(0)

sym and a(1)
sym terms of the symmetry

energy coefficients from the measured nuclear masses, respectively.

are generally higher than the results of Danielewicz et al.
In Fig. 1(b), we show the same data as in Fig. 1(a), but
as a function of isospin asymmetry I . One can find that
the obtained a(0)

sym term of the symmetry energy coefficients
somewhat depend on the corresponding isospin asymmetry
of nuclei, especially for nearly symmetric nuclei. The a(0)

sym
term of the symmetry energy coefficient obviously increases
with the decrease of asymmetry. The dependence of the
symmetry energy coefficient on the asymmetry of the nucleus,
especially that asym increases with increasing proton fraction
of the system, is also found in Ref. [1]. The results from
Danielewicz et al. cannot reproduce the observed trend of
isospin dependence well.

To describe the isospin and mass dependence of symmetry
energy coefficient of the nucleus, we propose a modified
formula,

asym = csym

[
1 − κ

A1/3
+ 2 − |I |

2 + |I |A
]

, (9)

FIG. 2. (Color online) Wigner energies of nuclei calculated with
different models. The open circles and the straight line denote the
results in Ref. [10] and those of Satula et al. [11], respectively. The
crosses denote results of this work, with csym = 29.3 MeV determined
by fitting the 2149 measured nuclear masses.

based on the conventional surface-symmetry term of the
liquid drop model, with a small correction term from isospin
asymmetry. The introduced correction term approximately
describes the Wigner effect [8–12] of nuclei. The introduced
I term in asym roughly leads to a correction EW to the binding
energy of the nucleus

EW = csymI 2A

[
2 − |I |

2 + |I |A
]

≈ 2csym|I | − csym|I |2 + · · · ,
(10)

which is known as the Wigner term. In Fig. 2, we show the
Wigner energies of nuclei calculated with different models.
The open circles and the crosses denote the results in
Ref. [10] and those of this work, respectively. The straight
line denotes the results of Satula et al. [11] (i.e., EW ≈
47|I |). In Ref. [12], Myers and Swiatecki wrote the Wigner
term as EW = −C0 exp[−W |I |/C0] ≈ −C0 + W |I | + · · ·,
with C0 = 10 MeV, W = 42 MeV. The results of this work
are comparable to those from Ref. [11] for most nuclei.

With the increasing of mass number A, the asym in Eq. (9)
has a finite value that approaches csym, which corresponds
to the symmetry energy coefficient of nuclear matter at
saturation density. The results from Eq. (9) are shown in
Fig. 3 for comparison, with csym = 31 MeV and κ = 2, which
are obtained by fitting the extracted a(0)

sym. One can see
that the extracted a(0)

sym can be reproduced reasonably well.
Furthermore, we checked the rms deviations of 2149 masses
of nuclei with N and Z � 8 from the measured data defined

TABLE I. Rms σ deviations between 2149 measured data and
predictions of Eq. (1) with different asym forms, and the corresponding
optimal parameters of the liquid drop formula.

asym form av as ac csym σ

(MeV) (MeV) (MeV) (MeV) κ (MeV)

Danielewicz −15.55 18.18 0.71 27.39 1.28 2.71
csym[1 − κA−1/3] −15.57 18.25 0.71 26.09 0.80 2.72
This work −15.56 18.11 0.71 29.38 1.52 2.55
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FIG. 3. (Color online) The same as Fig. 1, but with the results of Eq. (9) (open circles) for comparison.

as σ 2 = 1
m

∑
(M (i)

exp − M
(i)
th )2 by taking the different forms

of the symmetry energy coefficients mentioned previously
incorporating the liquid drop mass formula of Eq. (1). The
obtained rms deviations and the corresponding parameters of
the liquid drop formula are listed in Table I. Adopting the
form in Eq. (8), we obtain an rms deviation of 2.71 MeV. With
Eq. (9) for the symmetry energy coefficient, the rms deviation
is reduced to 2.55 MeV. Compared with the case without
the I term being taken into account, the rms deviation is
reduced by 6% (see Table I). Incorporating the semi-empirical
mass formula in Ref. [13], the rms deviation of the 2149
masses of nuclei can be considerably reduced, falling to
0.516 MeV. Furthermore, when the isospin dependence of the
symmetry energy coefficient is taken into account, the obtained
optimal csym changes from 26.09 to 29.38 MeV, which is
close to the calculated symmetry energy coefficient of nuclear
matter at saturation density from the Skyrme energy density
functional [13].

In summary, the mass and isospin dependence of symmetry
energy coefficients asym of finite nuclei was investigated with
the measured nuclear masses incorporating the liquid drop
formula. For heavy nuclei, the extracted a(0)

sym term of the
symmetry energy coefficients are consistent with the results of
Danielewicz et al. For light and intermediate nuclei, there exist
oscillations and fluctuations in the extracted a(0)

sym. The isospin
dependence of symmetry energy coefficients, especially the
enhanced asym in nearly symmetric nuclei, was observed.
To describe the mass and isospin dependence of asym, we
propose a modified formula based on the conventional surface-
symmetry term, with which the isospin dependence of asym

can be described reasonably well and the rms deviation of
nuclear masses from the experimental data can be effectively
reduced.

This work was supported by National Natural Science
Foundation of China, Grant Nos. 10875031 and 10847004.

[1] S. K. Samaddar, J. N. De, X. Vinas, and M. Centelles, Phys.
Rev. C 76, 041602(R) (2007).

[2] V. M. Kolomietz and A. I. Sanzhur, Phys. Rev. C 81, 024324
(2010).

[3] P. Danielewicz et al., Nucl. Phys. A 818, 36 (2009).
[4] M. W. Kirson, Nucl. Phys. A 798, 29 (2008).
[5] J. Mendoza-Temis, J. G. Hirsch, and A. P. Zuker,

arXiv:0912.0882v1.
[6] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729,

337 (2003).

[7] H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82
(1936).
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