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Dynamical nucleus-nucleus potential at short distances
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The dynamical nucleus-nucleus potentials for fusion reactions 40Ca + 40Ca, 48Ca + 208Pb, and 126Sn + 130Te
are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi
approximation for the kinetic energies of nuclei. The obtained fusion barrier for 40Ca + 40Ca is in good agreement
with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets
are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier
is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy
nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.
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I. INTRODUCTION

The synthesis of superheavy elements has been studied
for many years both theoretically and experimentally [1–4].
Up to now superheavy nuclei have been uniquely synthesized
through fusion reactions, including “cold” fusion reactions
with lead and bismuth targets [3] and “hot” fusion with actinide
targets [4]. Study of the dynamical process in fusion reactions,
especially the nucleus-nucleus potential, is of great importance
for the synthesis of superheavy elements. Experimentally, the
fusion barrier distributions can be obtained directly from the
measured fusion excitation functions, with which information
on the nucleus-nucleus potential around the fusion barrier can
be obtained. Figure 1(a) shows the nucleus-nucleus potential
calculated with different models for 40Ca + 40Ca. We can see
that the obtained barrier heights with different models are close
to each other and all of them are comparable to the extracted
mean barrier height, while the calculated nucleus-nucleus
potentials at short distances are quite different with different
models. It is known that adiabatic and diabatic approximations
lead to different nucleus-nucleus potentials, especially at short
distances, and thus to different fusion paths and different
mechanisms of fusion reactions. Both approximations are
frequently applied to study of the synthesis of superheavy
nuclei [1,10]. To understand the fusion mechanism of a heavy
system, it is important and necessary to study the nucleus-
nucleus potential at short distances, with which one can obtain
information on the fusion path and the formation probability of
a dinuclear system in reactions leading to superheavy nuclei.

For description of heavy-ion fusion reactions, some theoret-
ical models have been developed. The fusion coupled-channel
model is a powerful tool for calculation of the fusion excitation
function and investigation of the influence of nuclear structure
effects on fusion cross sections [11–13]. Some microscopic
dynamics models, such as the time-dependent Hartree-Fock
(TDHF) model [14,15] and the improved quantum molecular
dynamics (ImQMD) model [16,17], are widely applied to
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study of the dynamical behavior of the fusion process. The
ImQMD model is a semiclassical microscopic dynamics
model and is successfully used for intermediate-energy heavy-
ion collisions and for heavy-ion collisions at energies near the
Coulomb barrier [16–19]. In the ImQMD model dynamical
effects, such as dynamical deformation and neck formation,
are microscopically and self-consistently taken into account.
Recently, the model has been applied to the study of the
dynamical barrier of a heavy system [20], of mass parameters
[21], and of the strongly damped process of 238U + 238U
[22,23]. In this paper we carefully investigate the kinetic
energies of nuclei based on the extended Thomas-Fermi (ETF)
approximation with which the dynamical fusion barrier is
accurately obtained. The paper is organized as follows: In
Sec. II, the ImQMD model is briefly introduced. In Sec. III,
some calculated results on the kinetic energies of nuclei and
the nucleus-nucleus potential for 40Ca + 40Ca, 48Ca + 208Pb,
and 126Sn + 130Te are presented. Finally, a summary is given
in Sec. IV.

II. THE IMPROVED QUANTUM MOLECULAR
DYNAMICS MODEL

In the ImQMD model, as in the original QMD model [24],
each nucleon is represented by a coherent state of a Gaussian
wave packet. Through a Wigner transformation, the one-
body phase-space distribution function for N-distinguishable
particles is obtained (see Refs. [24] and [16] for details). The
density distribution function ρ of a system reads

ρ(r) =
∑

i

1

(2πσ 2
r )3/2

exp

[
− (r − ri)2

2σ 2
r

]
, (1)

where σr represents the spatial spread of the wave packet. The
propagation of nucleons is governed by Hamiltonian equations
of motion under the self-consistently generated mean field:

ṙi = ∂H

∂pi

, ṗi = −∂H

∂ri

, (2)
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FIG. 1. (Color online) (a) The nucleus-nucleus potential as a
function of the center-to-center distance R between two nuclei for
the reaction 40Ca + 40Ca. The solid curve denotes the results from
the Skyrme energy density functional together with the extended
Thomas-Fermi (ETF2) approximation [5]. The dash-dotted curve and
the plus signs denote the Bass potential [6] and the proximity potential
[7], respectively. (b) The fusion barrier distribution extracted from the
measured fusion excitation function [8] (see Eq. (9) of Ref. [9]).

where ri and pi are the center of the ith wave packet
in the coordinate and momentum space, respectively. The
Hamiltonian H consists of the kinetic energy and the effective
interaction potential energy:

H = T + U, (3)

T =
∑

i

p2
i

2m
. (4)

The effective interaction potential energy includes the nuclear
interaction potential energy and the Coulomb interaction
potential energy,

U = Uloc + UCoul, (5)

with

Uloc =
∫

Vloc(r)dr, (6)

where Vloc(r) is the potential energy density that is obtained
by the effective Skyrme interaction and taken to be the same
as that in Ref. [17]:

Vloc = α

2

ρ2

ρ0
+ β

γ + 1

ργ+1

ρ
γ

0

+ gsur

2ρ0
(∇ρ)2 + gτ

ρη+1

ρ
η

0

+ Cs

2ρ0
[ρ2 − κs(∇ρ)2]δ2, (7)

where δ = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry.
Inserting expression (1) together with Eq. (7) into Eq. (6),
we obtain the interaction potential energy:

Uloc = α

2

∑
i

ρi

ρ0
+ β

γ + 1

∑
i

(
ρi

ρ0

)γ

+ g0

2

∑
i

∑
j �=i

fs

ρij

ρ0

+ gτ

∑
i

(
ρi

ρ0

)η

+ Cs

2

∑
i

∑
j �=i

ti tj
ρij

ρ0
(1 − κsfs), (8)

TABLE I. Parameter set IQ2.

α (MeV) −356
β (MeV) 303
γ 7/6
g0 (MeV fm2) 7.0
gτ (MeV) 12.5
η 2/3
Cs (MeV) 32.0
κs (fm2) 0.08
ρ0 (fm−3) 0.165

where

ρi =
∑
j �=i

ρij =
∑
j �=i

1

(4πσ 2
r )3/2

exp

[
− (ri−rj )2

4σ 2
r

]
, (9)

fs = 3

2σ 2
r

−
(

ri−rj

2σ 2
r

)2

, (10)

and ti = 1 for protons and −1 for neutrons, respectively. The
parameter set IQ2 [18] (see Table I) is adopted in this work.
The Coulomb energy is written as the sum of the direct and the
exchange contribution, with the latter being taken into account
in the Slater approximation [25,26],

UCoul = e2

2

∫
ρp(r)ρp(r′)

|r − r′| drdr′ − e2 3

4

(
3

π

)1/3 ∫
ρ4/3

p dr.

(11)

To describe the fermionic nature of the N-body system and
to improve the stability of an individual nucleus, the phase-
space occupation constraint method [27] and the system-size-
dependent wave-packet width σr = 0.09A1/3 + 0.88 fm [18]
are adopted. The phase-space occupation constraint is an
effective approach to improve the momentum distribution
of the nuclear system [16,27]. In this approach, the phase-
space occupation number of each particle is checked at
each time step. If the phase-space occupation number is
larger than 1 for particle i, that is, f̄i > 1, the momentum
of particle i is randomly changed by a series of two-body
elastic scatterings between i and its partner that guarantee that
the total momentum and total kinetic energy are conserved
in the procedures. In the ImQMD model, the new sample
for the momenta of the particles is constrained by the Pauli-
blocking probability [27] as in the usual two-body collision
process. Actually, the momenta of two particles obtained
in this way influence the motion of particles in the system
in not only this step but also the further steps. It is unknown
whether the system will be in the most suitable motion path.
In this work, we perform one further step; that is, we calculate
the total energy of the system at step t and the total energy
E(t + �t) at the next time step (t + �t) simultaneously. If
the value of E(t + �t) obviously deviates from that of E(t),
the two-body elastic scattering procedure is re-executed. The
number of times to re-execute the procedure is small (zero to
four) at each time step for fusion reactions. This additional
constraint can further improve the stability of an individual
nucleus (reducing the spurious emission of nucleons) and
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is helpful for study of the formation process of compound
nuclei, which lasts several thousand fm/c or longer. We have
checked that the total energy of the system is well conserved
for thousands of fm/c with this new procedure.

III. RESULTS

In this section we first study the kinetic energies of a series
of nuclei, then calculate the nucleus-nucleus potential in fusion
reactions based on the ETF approximation.

A. Kinetic energies of nuclei

We first study the kinetic energy of a series of nuclei in
the ground state from 16O to 259No. Based on the extended
Thomas-Fermi approximation [28], the kinetic energy of a
free Fermi gas can be expressed as

Ek = h̄2

2m

∫
τ (r)dr = ck〈ρ〉2/3 + h̄2

2m

1

36

∫
(∇ρ)2

ρ
dr + · · · ,

(12)

with the kinetic energy density τ (r) and the coefficient ck =
(h̄2/2m)(3/5)(3π2/2)2/3. With the help of the ETF form of the
kinetic energy for a Fermi gas system in Eq. (12), we express
the kinetic energy of an individual nucleus in the ImQMD
model as

EETF
k � c0

∑
i

ρ
2/3
i + c1∑

ρi

∑
i,j �=i

fsρij + c2N, (13)

with c0 = 41.2 MeV fm2, c1 = 4.8 MeV fm2, and c2 =
−1.0 MeV for IQ2, which are determined by fitting the
obtained kinetic energies of a series of nuclei with Eq. (4)
(see Fig. 2). N is the particle number of the system under
consideration. The expressions for ρi , ρij , and fs are given
in Eqs. (9) and (10), respectively. The c0 term in Eq. (13)

represents the result of the Thomas-Fermi (TF) approximation
[see the 〈ρ〉2/3 term in Eq. (12)]. The other terms give the
corrections from the finite-system effect.

Figure 2(a) shows the time average of the kinetic energy per
particle for a series of nuclei. Here we take 100 events for each
nucleus. Filled and open circles denote the results with Eq. (4)
and with Eq. (13), which is based on the ETF approximation,
respectively. Here ETF means that the form of Eq. (13) is
roughly obtained according to the extended Thomas-Fermi
approximation. The crosses in Fig. 2 denote the results with
the TF approximation,

ETF
k � c0

∑
i

ρ
2/3
i , (14)

where the correction terms from the finite-system effect
are not taken into account. Figure 2 shows that for light
nuclei (A < 50), the calculated kinetic energies using the TF
approximation are much smaller than the values using Eq. (4),
while for heavy nuclei (A > 150), the results obtained with the
TF approximation are slightly larger than those with Eq. (4).
Only for intermediate nuclei the results are in agreement
with each other. The kinetic energy calculated with the ETF
approximation is in good agreement with the values from
Eq. (4) except for very light nuclei. Figure 2 shows that the ETF
approximation can reasonably well describe the kinetic energy
for finite nuclei. The time evolution of the kinetic energies
per particle for the nuclei 40Ca, 90Zr, and 208Pb are shown in
Fig. 2(b). The kinetic energies of these nuclei are well
described by Eq. (13), based on the ETF approximation.

B. Nucleus-nucleus potential in fusion reactions

By using the ImQMD model, we can calculate the static
and dynamical Coulomb barriers. In calculation of the static
Coulomb barrier, which is based on the frozen density
approximation, the initial density distribution of the projectile

FIG. 2. (Color online) (a) Time average of the kinetic energy per particle for a series of nuclei. Filled circles, open circles, and crosses
denote the results with Eqs. (4), (13), and (14), respectively. (b) Time evolution of the kinetic energy per particle for 40Ca, 90Zr, and 208Pb.
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and target is adopted. In calculation of the dynamical Coulomb
barrier, the realistic density distribution of the system, which
changes with time owing to the interaction between nucleons,
is used. In this work, we concentrate on calculation of the
dynamical fusion barrier. We study the dynamical nucleus-
nucleus potential V based on the ETF approximation for the
kinetic energy. According to the energy conservation, we have

Ec.m. = TR + V + E∗ + Toth, (15)

where Ec.m. is the incident center-of-mass energy; TR is the
relative motion kinetic energy of two colliding nuclei, which
can be easily obtained in the ImQMD model, as the position
and momentum of each nucleon can be followed at every time
step; E∗ is the excitation energy; and Toth is other collective
kinetic energy, such as neck vibration. When the projectile
and target nuclei are well separated (R � R1 + R2), E∗ and
Toth can be negligible, which has been checked by TDHF
calculations [14,29], and the nucleus-nucleus potential is thus
expressed as

V1 = Ec.m. − TR, (16)

where R1 and R2 are the charge radii of the projectile and
the target nuclei, respectively, which are described by the
empirical formula Ri = 1.25A1/3(1 − 0.2N−Z

A
), proposed in

Ref. [30]. After the dinuclear system is formed (R < R1 +
R2), the nucleus-nucleus potential may be described in a way
like the entrance channel potential [31],

V2 = Etot(R) − Ē1 − Ē2, (17)

where Etot(R) is the energy of the composite system, which
is strongly dependent on the dynamical density distribution of
the system obtained with the ImQMD model, and Ē1 and Ē2

are the time average of the energies of the projectile and target
nuclei, respectively. Here, the values of Ē1 and Ē2 are obtained
from the energies of the projectile(like) and target(like)
nuclei in the region RT < R < RT + 8. RT = R1 + R2 is the
touching point. R is the relative distance between the two
nuclei, which is a function of time. In the calculation of Etot(R),
Ē1, and Ē2, Eq. (13), which is a function of the local density,
is used for the description of the intrinsic kinetic energy of the
system under consideration.

In this work, we write the nucleus-nucleus potential as a
smooth function between V1 and V2:

Vb(R) = 1
2 erfc(s)V2 + [

1 − 1
2 erfc(s)

]
V1, (18)

where erfc(s) is the complementary error function and

s = R − RT + δ

�R
, (19)

with δ = 1 fm and �R = 2 fm. The nucleus-nucleus potential
obtained in Eq. (18) approaches V1 with an increase in the
separation distance between the two nuclei. On the contrary,
Vb(R) approaches V2 with the formation of a dinuclear system
and a decrease in the distance between the two nuclei. To
study the dynamical nucleus-nucleus potential, we create
500 reaction events for head-on collision of 40Ca + 40Ca
at several c.m. energies, ranging from Ec.m. = 52 MeV to
Ec.m. = 140 MeV. For each event, we evolve the reaction
system for a time of 700 fm/c. The distance between the

FIG. 3. (Color online) The dynamical nucleus-nucleus potential
of 40Ca + 40Ca at different incident energies Ec.m.. Crosses denote the
entrance-channel potential with the Skyrme energy density functional
approach [5], which is based on frozen density approximation. Open
circles denote the results with TDHF [32] at Ec.m. = 80 MeV. Insets:
Density distributions for this reaction at Ec.m. = 80 MeV and different
relative distances.

projectile and the target at the initial time is set to 30 fm
for this reaction. The scattering events at t = 700 fm/c

are not involved in the calculation of the nucleus-nucleus
potential. Figure 3 shows the dynamical nucleus-nucleus
potentials obtained at different incident energies Ec.m.. The
corresponding density distributions at Ec.m. = 80 MeV and
different relative distances are also shown, in the insets at the
bottom. Figure 4 shows the average fusion barrier height B for
the reaction 40Ca + 40Ca at different Ec.m. values. Figures 3
and 4 show that the dynamical barriers depend on the

FIG. 4. (Color online) (a) Barrier height B for the reaction
40Ca + 40Ca at different incident energies Ec.m.. Horizontal dashed
and solid lines indicate the barrier height of the entrance-channel
potential based on the frozen density approximation [5] and the
lowest barrier B0 extracted from the fusion excitation function [8],
respectively. (b) Same as Fig. 1(b).
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FIG. 5. (Color online) Dynamical nucleus-nucleus potentials for the reactions 48Ca + 208Pb and 126Sn + 130Te at incident energies Ec.m. =
200 MeV and Ec.m. = 350 MeV, respectively. The initial distance is set to 40 fm. Arrows denote the corresponding Bass barriers.

incident energies. At energies around the Coulomb barrier, the
dynamical barrier increases rapidly with the incident energy.
With a further increase in the incident energy, the dynamical
barrier approaches the barrier height of the entrance-channel
potential (56.9 MeV), which is obtained with the Skyrme
energy density functional together with the frozen density
approximation [5]. This trend was also found in Refs. [15]
and [20]. When the incident energy decreases gradually down
to Ec.m. = 55 MeV, the height of the dynamical barrier falls
to 52.0 MeV. At a lower incident energy, the height of the
dynamical barrier approaches about 50 MeV, which is close to
the height of the lowest barrier B0 extracted from the fusion
excitation function. In addition, it is encouraging that the
barrier height and the depth of the fusion pocket obtained
in this work are comparable to the results of the TDHF
calculations [32]. The depth of the fusion pocket is about
25 MeV for this reaction system.

At very short distances between two nuclei, it is thought
that the Q value of the fusion system may provide information
on the nucleus-nucleus potential. One commonly defines the
excitation energy for a reaction from the expression

− Qgg = Ec.m. − E∗, (20)

where Qgg is the mass difference between the two initial
nuclei and the combined system in its ground state. From
Eqs. (15) and (17), one finds that when the compound nucleus
is well formed and the collective motion is negligible, one
gets V (R = 0) = −Qgg , which is the result of the adiabatic
nucleus-nucleus potential [10]. For the reaction 40Ca + 40Ca,
we get −Qgg = 14.3 MeV. Actually, because expression (20)
is correct relative to the ground state of the composite system,
it does not accurately describe the excitation energy relative to
other intermediate transition states formed during the collision
[32], and the nucleus-nucleus potential obtained from the
ImQMD model and the TDHF [32] at a short distance does
not exactly reach the value −Qgg , as the composite system
formed during the collision is far from a ground state.

Using the same approach we studied the nucleus-nucleus
potential for the reactions 48Ca + 208Pb and 126Sn + 130Te at
energies above the Coulomb barrier. The corresponding values
of −Qgg for these two reactions are 153.8 and 261.2 MeV,

respectively. These two reactions lead to the same compound
nucleus, 256No. Figure 5 shows the calculated nucleus-nucleus
potentials for these two reactions. The arrows denote the Bass
barriers. From Fig. 5 we can see that the obtained barrier
heights are close to the corresponding Bass barriers. The depth
of the fusion pocket (about 7 MeV) for 48Ca + 208Pb becomes
much shallower than that for 40Ca + 40Ca (about 25 MeV)
and the fusion pocket for 126Sn + 130Te almost disappears,
which indicates that quasifission could easily occur in the
heavy fusion process, especially for more symmetric systems.
Furthermore, we find that the nucleus-nucleus potentials for
the reactions 48Ca + 208Pb and 126Sn + 130Te at short distances
are much higher than the value of −Qgg and even higher than
the Coulomb barrier, which is quite different from the case for
40Ca + 40Ca. These calculations indicate that (1) additional
incident energy (so-called extra-push energy [2]) beyond the
energy to overcome the Coulomb barrier may be required to
form the compound nucleus for a heavy fusion system and (2)
the process of nucleon transfer between the projectile(like)
and the target(like) nuclei can last for a period of time,
owing to the appearance of a fusion pocket in the dinuclear
system, which is the basic assumption of the dinuclear system
model [1]. To illustrate the fusion path, we also show the
corresponding density distributions of the composite systems
at t = 700 fm/c in the insets in Fig. 5. One can see that
the corresponding compound nuclei are not well formed at
t = 700 fm/c for these two heavy fusion systems. The strongly
deformed composite systems, or so-called dinuclear systems,
are formed at about t = 350 fm/c and can last hundreds or
even thousands of fm/c for a heavy fusion system, which
is quite different from the case for a light system such
as 40Ca + 40Ca, in which the spherical composite system is
well formed at t = 700 fm/c at incident energies above the
Coulomb barrier (see Fig. 3). For 126Sn + 130Te, the composite
system tends to undergo quasifission or fission. Figure 6 shows
the capture cross sections of these two reactions. The open
and filled circles in Fig. 6(a) denote the experimental data on
48Ca + 208Pb in Refs. [33] and [34], respectively. Solid curves
denote the results of an empirical barrier distribution approach
that is based on the Skyrme energy-density functional together
with the ETF approximation [5,35]. Filled squares denote
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FIG. 6. (Color online) Capture cross sections for the reactions 48Ca + 208Pb and 126Sn + 130Te. Open and filled circles in (a) denote the
experimental data for 48Ca + 208Pb [33,34]. Solid curves denote the results of an empirical barrier distribution approach proposed in Refs. [5]
and [35]. Filled squares denote the results with the ImQMD model and error bars denote the corresponding statistical errors.

the results of the ImQMD model with IQ2, and error bars
denote the corresponding statistical errors. For the reaction
48Ca + 208Pb, the experimental data at energies above the
Coulomb barrier can be reproduced acceptably well by the
ImQMD model. Because the ImQMD model has difficulties
when dealing with shell effects, the capture cross sections
of 48Ca + 208Pb at sub-barrier energies cannot be described
well. For 126Sn + 130Te, the capture cross sections calculated
with the ImQMD model are comparable to the results of the
empirical barrier distribution approach.

IV. SUMMARY

In summary, the kinetic energies of a series of nuclei
have been studied with the ImQMD model together with
the ETF approximation, which gives accurate results for
finite nuclear systems, especially for light and heavy nuclei.
Furthermore, with the ETF approximation for the kinetic
energies, we have studied the dynamical Coulomb barrier of
the reaction 40Ca + 40Ca at different incident energies. The
results show that the dynamical Coulomb barrier depends
strongly on the incident energy. With an increase in incident
energy, the dynamical Coulomb barrier increases gradually
and approaches the entrance-channel potential, which is based
on the frozen density approximation. The height of the

dynamical Coulomb barrier decreases with a decrease in
incident energy and approaches the lowest barrier extracted
from the fusion excitation function. The behavior of the
nucleus-nucleus potential at short distances for heavy systems
is obviously different from that for light systems. For heavy
fusion systems, the depth of the fusion pocket becomes much
shallower and the nucleus-nucleus potential at short distances
is higher than the adiabatic potential. The capture cross
sections for 48Ca + 208Pb and 126Sn + 130Te have also been
studied with the ImQMD model. The calculated results are
comparable to the results of the empirical barrier distribution
approach. A systematic study of heavy fusion systems, such
as calculation of the potential energy surface of a composite
system in the fusion process as a function of mass asymmetry
and the distance between two nuclei, is in progress, with shell
effects being taken into account.
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