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Modification of nuclear mass formula by considering isospin effects
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We propose a semiempirical nuclear mass formula based on the macroscopic-microscopic method in which the
isospin and mass dependence of model parameters are investigated with the Skyrme energy density functional.
The number of model parameters is considerably reduced compared with the finite range droplet model. The
rms deviation with respect to 2149 measured nuclear masses is reduced by 21%, falling to 0.516 MeV. The new
magic number N = 16 in light neutron-rich nuclei and the shape coexistence phenomena for some nuclei have
been examined with the model. The shell corrections of superheavy nuclei are also predicted.
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I. INTRODUCTION

The nuclear mass is of great importance not only for
various aspects of nuclear physics but also for weak-interaction
studies and astrophysics [1]. In nuclear physics, it is helpful
to study the nuclear symmetry energy and the synthesis
of superheavy nuclei by considering the more than 2000
measured nuclear masses. Theoretically, the mass of an atomic
nucleus can be calculated by the macroscopic-microscopic
method (such as the finite-range droplet model [2]) or the
microscopic approaches (such as the Hartree-Fock Bogoliubov
approach [3,4]) or some other mass formulas [5]. The best
mass formulas at present can reach about 0.6 MeV in the rms
deviation for the usual data set of 2149 measured masses
of nuclei (N and Z � 8) [6] with about 24 ∼ 30 model
parameters. Compared with the microscopic Hartree-Fock
(HF) approaches, the macro-micro model is much faster in
the calculation of the nuclear masses for the whole nuclear
chart which provides a possibility for performing large-scale
nuclear mass calculations to refine the model parameters and
to explore the global behavior of nuclei. However, there are
two crucial points in the macro-micro method that should be
further studied. The first is that the consistency of the model
parameters between the macroscopic and microscopic parts
in the macro-micro method should be improved. It is known
that although the finite-range droplet model (FRDM) is widely
used in the calculations of nuclear mass, the parameter values
in the calculation of the microscopic shell corrections differ
from the corresponding values used in the macroscopic part of
the model [1]. This less consistency between the macroscopic
and microscopic parts may considerably reduce the credibility
of extrapolations of the macroscopic-microscopic approach.
On the other hand, with the great development of the
experimental facilities for the study on superheavy nuclei
and nuclei far from the β-stability line, the influence of
isospin effects on the nuclear mass formula attracted great
attention and should be given better consideration. Based on
the above discussions, an improved nuclear mass formula that
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self-consistently considers the isospin effects in both macro-
scopic and microscopic parts would need to be established to
provide large-scale nuclear mass calculations.

To investigate the consistency of the model parameters
between the macroscopic and microscopic parts in the
macroscopic-microscopic approach and isospin dependence of
the model parameters, the Skyrme energy density functional
approach together with the extended Thomas-Fermi (ETF)
approximation [7,8] is used. It is known that the energy-density
functional theory is widely used in the study of the nuclear
ground state which provides us with a useful balance between
accuracy and computation cost allowing large systems with
a simple self-consistent manner. With the Skyrme energy
density functional approach, we systematically investigate
some ground state properties of nuclei, such as the nuclear
symmetry energy coefficient, the deformation energy, and
the symmetry potential, which are helpful to improve the
macro-micro method. Based on these calculations, we propose
a semiempirical nuclear mass formula by taking into account
the isospin- and mass-dependent model parameters. The article
is organized as follows. In Sec. II, the proposed mass formula is
introduced. In Sec. III, some calculation results are presented.
Finally, a summary is given in Sec. IV.

II. THE MODEL

In this section, we first introduce the macroscopic part of
the mass formula. Then, the influence of nuclear deformation
on the macroscopic energy of nucleus is investigated with the
Skyrme energy-density functional approach, and the single-
particle potential used in the calculation of the microscopic
shell correction is introduced. In addition, the symmetry
potential and the symmetry energy coefficient of nuclear matter
is also investigated. Finally, the parameters adopted in the
model are presented.

A. Modified Bethe-Weizsäcker mass formula

We start with the macroscopic-microscopic method [2,9].
The total energy of a nucleus can be calculated as a sum of the
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liquid-drop energy and the Strutinsky shell correction �E,

E(A,Z, β) = ELD(A,Z)
∏
k�2

(
1 + bkβ

2
k

) + �E(A,Z, β).

(1)

The liquid-drop energy of a spherical nucleus ELD(A,Z) is
described by a modified Bethe-Weizsäcker mass formula [10],

ELD(A,Z) = avA + asA
2/3 + ac

Z(Z − 1)

A1/3
(1 − Z−2/3)

+ asymI 2A + apairA
−1/3δnp (2)

with isospin asymmetry I = (N − Z)/A. The pairing term
proposed in Ref. [11] is adopted, with

δnp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − |I | : N and Z even

|I | : N and Z odd

1 − |I | : N even, Z odd, and N > Z

1 − |I | : N odd, Z even, and N < Z

1 : N even, Z odd, and N < Z

1 : N odd, Z even, and N > Z.

(3)

In this work, the symmetry energy coefficient of finite nuclei
is written as,

asym = csym

[
1 − κ

A1/3
+ 2 − |I |

2 + |I |A
]

, (4)

based on the conventional surface-symmetry term [12,13] of
liquid-drop model, with a small correction term for description
of isospin dependence of asym. The sensitive dependence of the
symmetry energy coefficient on the asymmetry of the nucleus,
especially that asym increases with increasing proton fraction
of the system, is also found in Ref. [14]. The introduced I

correction term approximately describes the Wigner effect [2]
of heavy nuclei. For a heavy nucleus near the β-stability line
(A|I | � 2 � |I |), the introduced I term in asym roughly leads

to a correction csym
(2−|I |)I 2A

2+|I |A ≈ 2csym|I | (known as Wigner
term) to the binding energy of the nucleus. Compared with
the case without the I term being taken into account, the
rms deviation of nuclear masses defined as σ 2 = 1

m

∑
(M (i)

exp −

M
(i)
th )2 from the measured masses AME2003 [6] for the 2149

nuclei (N and Z � 8) is reduced by about 6%. Furthermore,
we find when the isospin dependence of the symmetry energy
coefficient is taken into account, the obtained optimal csym

increases about 3 MeV and up to 29 MeV, which is close to
the symmetry energy coefficient of nuclear matter at saturation
density obtained from the Skyrme energy-density functional.

The Coulomb exchange correction and surface diffuseness
correction to the Coulomb energy is approximately taken
into account as the term Z−2/3. In addition, the terms bk

in Eq. (1) which are obtained according to the Skyrme
energy-density functional (the detailed discussion is in the next
subsection) describe the contribution of nuclear deformation
to the macroscopic energy.

B. Influence of nuclear deformation on the macroscopic energy

For the deformation of nuclei, we consider only axially
deformed cases. In this work, only β2 and β4 deformations of
nuclei are taken into account. We first investigated the energy
of a nucleus with respect to a β2 deformation based on the
Skyrme energy-density functional together with the extended
Thomas-Fermi approximation (ETF) [7,8]. The procedure is
as follows: The total energy of a nucleus can be expressed as
the integral over the Skyrme energy-density functional H(r)
[15]. Given a density functional ρ(r), one can calculate the
corresponding energy via E = ∫

H[ρ(r)] dr under the ETF
approximation. We first obtain the binding energy E0 and the
spherical Woods-Saxon density distributions of a nucleus with
the approach in Ref. [8]. Then, with the same procedure, we
calculate the energy E(β2) of the nucleus with a quadrupole
deformed Woods-Saxon density distribution of the nucleus in
which the central density and the surface diffuseness remained
unchanged. Figure 1(a) shows the calculated energy of 16O,
48Ca, and 208Pb as a function of β2 deformation with the SkM*
interaction [15] (denoted by circles). The solid curves denote
the results of a formula E/E0 = 1 + b2β

2
2 in which the value

of b2 is obtained by fitting the open circles. One can see that
the parabola approximation to the change of energy with β2 is
acceptable. Figure 1(b) shows the value of b2 as a function of

FIG. 1. (Color online) (a) Energy of 16O, 48Ca, and 208Pb with respect to β2 deformation. Here, the values of E0 are negative. The circles
and the solid curves denote the results of SkM* interaction and of a formula E/E0 = 1 + b2β

2
2 , respectively. (b) The value of b2 obtained with

SkM* as a function of mass number.
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FIG. 2. (Color online) (a) Energy of 208Pb with respect to β2 and β4 deformation with Skyrme energy-density functional approach. (b) The
value of bk as a function of mass number. The scattered symbols denote the obtained curvatures of the parabolas with the Skyrme force SkM*
for a number of nuclei. The solid curves denote the corresponding results with an empirical formula (6).

the mass number. The crosses denote the results of the SkM*
interaction for a number of nuclei along the β-stability line.
We find that the dependence of b2 on the mass number A can
be reasonably well described by the formula

b2 = g1A
1/3 + g2A

−1/3. (5)

This form of mass dependence of b2 is therefore adopted
in the proposed mass formula and the optimal values of g1

and g2 are finally determined by the 2149 measured nuclear
masses [6].

To take into account the influence of the higher-multipole
deformation of nuclei, we investigate the change of energy of a
nucleus with respect to a certain set of nuclear deformation pa-
rameters with the Skyrme energy-density functional approach
mentioned previously. In Fig. 2(a), we show the energy of
208Pb as a function of β2 and β4 with the Skyrme force SkM*.
We find that the influence of nuclear β4 deformation on the
nuclear energy can be roughly described by a parabola at
small deformations. For other higher-multipole deformations,
the parabola approximation can also be applied for small
deformation cases, and the proposed model can be easily
extended to consider other higher-multipole deformations.
Furthermore, we notice that the curvature of the parabola for
a given βk deformation can be approximately described by an
empirical formula

bk =
(

k

2

)
g1A

1/3 +
(

k

2

)2

g2A
−1/3, (6)

which is an extension of the formula (5). In Fig. 2(b), we show
the mass-dependent curvatures of the parabolas. The crosses,
the open circles, the solid squares, and the triangles denote the
obtained curvatures b2, b3, b4, and b6 of the parabolas with the
Skyrme energy-density functional approach for a number of
nuclei along the β-stability line, respectively. The solid curves
denote the corresponding results with the empirical formula
(6) taking g1 = 0.0074 and g2 = −0.38. One can see that the
curvatures of the parabolas can be reasonably well described by
the empirical formula which greatly reduces the computation
time for the calculation of deformed nuclei.

C. Single-particle potential in the microscopic part

In the microscopic part, the shell correction

�E = c1Esh (7)

is obtained by the traditional Strutinsky procedure [16]
by setting the smoothing parameter γ = 1.2h̄ω0 and the
order p = 6 of the Gauss-Hermite polynomials, where Esh =
Esh(P ) + Esh(N ), i.e., the sum of the shell energies of protons
and neutrons and h̄ω0 = 41A−1/3 MeV is the mean distance
between the gross shells. In this work, we introduce a scale
factor c1 to the shell correction. This additional parameter is
used to adjust the division of the binding energy between the
macroscopic part and the remaining microscopic correction. It
is known that a similar scale factor is usually introduced to the
liquid-drop part [17] or the shell-correction part [18] to adjust
the division between the two parts for giving better results
in the calculation of fission barrier. It is necessary to investigate
the influence of this parameter on the nuclear masses. We find
that the rms deviation for the 2149 nuclear masses can be
somewhat reduced with the introduced factor c1 compared
with the case setting c1 = 1.

To obtain the shell-correction �E, we execute a computer
code WSBETA [19] to calculate the single-particle levels of an
axially deformed Woods-Saxon potential and then perform the
Strutinsky procedure. The single-particle Hamiltonian in the
code WSBETA is written as

H = T + V + Vs.o., (8)

with the spin-orbit potential

Vs.o. = −λ

(
h̄

2Mc

)2

∇V · (�σ × �p), (9)

where λ denotes the strength of the spin-orbit potential. In
this work, we set λ = λ0(1 + Ni

A
) with Ni = Z for protons and

Ni = N for neutrons. Here, the isospin-dependent spin-orbit
interaction strength is obtained based on the Skyrme energy-
density functional in which the spin-orbit potential is usually
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expressed as

V s.o.
q = 1

2
W0∇(ρ + ρq) · (�σ × �p)

≈ 1

2
W0

(
1 + Ni

A

)
∇ρ · (�σ × �p), (10)

with the nucleon density ρ = ρp + ρn and the spin-orbit
strength W0. In Eq. (9) M is the free nucleonic mass and
�σ and �p are the Pauli spin matrix and the nucleon momentum,
respectively [19]. The central potential V is described by an
axially deformed Woods-Saxon form

V (�r ) = Vq

1 + exp
[

r−R(θ)
a

] , (11)

where the depth Vq of the central potential (q = p for protons
and q = n for neutrons) is written as

Vq = V0 ± VsI (12)

with the plus sign for neutrons and the minus sign for protons.
Vs is the isospin-asymmetric part of the potential depth.
We assume Vs = asym in this work (detailed study of the
relation between Vs and asym is given in the following part
of this section). R defines the distance from the origin of the
coordinate system to the point on the nuclear surface

R(θ ) = c0R [1 + β2Y20(θ ) + β4Y40(θ ) + · · ·], (13)

with the scale factor c0 which represents the effect of
incompressibility of nuclear matter in the nucleus and is
determined by the so-called constant volume condition [19].
Ylm(θ, φ) are the spherical harmonics. R = r0A

1/3 and a

denote the radius and surface diffuseness of the single-particle
potential, respectively. Here, we assume and set the radius and
diffuseness of the single-particle potential of protons equal
to those of neutrons for simplicity. For protons the Coulomb
potential is additionally involved (see Ref. [19] for details).

D. Symmetry potential and symmetry energy coefficient

The relation between the isospin-asymmetric part Vs of the
single-particle potential depth in the microscopic part and
the symmetry energy coefficient in the macroscopic part is
investigated based on the Skyrme energy-density functional
together with the ETF approach. In this approach, the central
one-body potential is described by Vq = δε(r)

δρq (r) with the energy-
density functional ε(r) (see Eq. (9) in Ref. [7] for details). The
difference between the neutron (q = n) and proton (q = p)
potentials of nuclear matter is written as

Vn − Vp = 2B2ρδ + 2B8ρ
α+1δ + B4(τn − τp)

= 2B2ρδ + 2B8ρ
α+1δ + B4ckρ

5/3δ + O(δ3) (14)

with the kinetic energy density τq which can be expressed as
τq = 3

5 (3π2)2/3ρ
5/3
q in the Thomas-Fermi approximation, the

isospin asymmetry δ = (ρn − ρp)/ρ, and the coefficient ck =
(3π2/2)2/3. B2, B8, and B4 (notations in Ref. [7]) are some
combinations of Skyrme parameters, given by B2 = − 1

2 t0( 1
2 +

x0), B8 = − 1
12 t3( 1

2 + x3), and B4 = − 1
4 [t1( 1

2 + x1) − t2( 1
2 +

x2)]. The symmetry potential Vsym may be written as

Vsym = Vn − Vp

2δ
= B2ρ + B8ρ

α+1 + 1

2
B4ckρ

5/3 + O(δ2).

(15)

The symmetry energy coefficient of nuclear matter J is
written as [20]

J = 1

2
B2ρ + 1

2
B8ρ

α+1 − 1

24
�sckρ

5/3 + 1

3

(
h̄2

2M

)
ckρ

2/3

(16)

with �s = 3t1x1 − t2(4 + 5x2). The �s term and the last term
of Eq. (16) give the contributions of the effective mass [7]
and the kinetic energy to the J , respectively. From the above
equations for Vsym and J , one can obtain the following relation
between them:

J = 1

2
Vsym − 1

24
[�s + 6B4]ckρ

5/3 + 1

3

(
h̄2

2M

)
ckρ

2/3.

(17)

A similar equation is previously proposed in Ref. [21] based
on perturbation theory,

J = 1

2
Vsym(kF) + 1

6
kF

[
∂V0(km)

∂km

]
km=kF

+ 1

3

(
h̄2

2M

)
k2

F.

(18)

Due to the uncertainty of choosing the interaction parameters,
there exists a large uncertainty for the value of Vsym in different
models. In Fig. 3(a), we show the calculated symmetry
potential Vsym of nuclear matter with 78 Skyrme forces. The
Vsym has a value of about 10 ∼ 50 MeV according to the
calculations. Brueckner-Hartree-Fock calculations show that
the value of Vsym is about 25 MeV [22]. These calculations
indicate that the value of Vsym is comparable to that of the
symmetry energy coefficient J , which is about 30 MeV.

For finite nucleus, the isospin-asymmetric part Vs of the
single-particle potential should slightly differ from the value
of Vsym. With the density distributions of nuclei obtained in
Ref. [8], we calculate the potential depth of protons and neu-
trons for a large number of nuclei. We find that the difference
Vn − Vp increases linearly with the isospin asymmetry I [see
Fig. 3(b)]. The average value for the isospin-asymmetric part
Vs can be obtained by linearly fitting the calculated results. The
obtained values of Vs are 17.0 and 26.9 MeV with SLy4 [23]
and SkM* [15] forces, respectively. In Ref. [24], the authors
found that the experimental Fermi energies of a number of
magic nuclei can be well described with a value of 23.2 MeV
for Vs . The asym in this work has a value of about 23 ∼ 24 MeV
for heavy nuclei which is roughly comparable to the obtained
values of Vs . In the first round of searching for the optimal
parameters of the proposed mass formula, we treat Vs as a free
parameter and find that the obtained value of Vs is very close
to that of asym. So we empirically set and assume Vs ≈ asym in
the improved mass formula for simplification.
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FIG. 3. (Color online) (a) Symmetry potential Vsym of nuclear matter with 78 Skyrme forces. (b) The difference between the potential depth
of neutrons and of protons as a function of mass asymmetry. The circled curve and the triangled curve denote the results fitted to the calculated
results with SLy4 (short red dashes) and SkM* force (small gray squares) for a large number of nuclei, respectively.

E. Model parameters

From the above discussions, one can see that the macro-
scopic and microscopic parts in the proposed mass formula are
closely connected to each other through the coefficient asym

of the symmetry energy and other isospin-dependent model
parameters. The number of model parameters is consider-
ably reduced compared with the finite-range droplet model
(FRDM) in which the number of parameters is about 31 [1].
Here, we have 13 independent parameters, av , as , ac, csym, κ ,
apair, g1, g2, c1, V0, r0, a, λ0, for the nuclear mass. By varying
these parameters and searching for the minimal deviation of
the 2149 nuclear masses from the experimental data, we obtain
a parameter set labeled as WS, which is listed in Table I.
To find the minimal energy E(A,Z, β) with respect to a set
of deformation parameters for a given nucleus, the downhill
searching method is adopted. We re-execute the downhill
algorithm for several times starting from different initial
deformation parameters in order to find the lowest energy of a
nucleus from some possible local minima on the energy surface
E(A,Z, β). In the calculation of nuclear masses with the
obtained binding energies, the electron binding energies are not

TABLE I. Model parameters of the
mass formula.

Parameter WS

av (MeV) −15.5841
as (MeV) 18.2359
ac (MeV) 0.7173
csym (MeV) 29.2876
κ 1.4492
apair (MeV) −5.5108
g1 0.00862
g2 −0.4730
c1 0.7274
V0 (MeV) −47.4784
r0 (fm) 1.3840
a (fm) 0.7842
λ0 26.3163

included. In the parameter searching procedure, the downhill
searching method and the simulated annealing algorithm [25]
are incorporated. The former is used for the parameters of the
microscopic part, while the latter is for the macroscopic part.

III. RESULTS AND DISCUSSION

In this section, we first show the calculated rms deviations
of the nuclear masses and of the neutron separation energies.
In addition, the change of magic number in light neutron-rich
nuclei and the shape coexistence phenomena for some nuclei
have been checked with the model. Then, the shell corrections
of superheavy nuclei and the location of the center area of
the superheavy island are investigated with the proposed mass
formula.

A. Test of the model

The corresponding rms deviations of nuclear masses for
the 2149 measured nuclei with the parameter set WS is
listed in Table II. In addition, the results of FRDM and
Hartree-Fock Bogoliubov (HFB-14 [3] and HFB-17 [4]) are
also listed for comparison. Np denotes the corresponding
number of parameters used in each model. Compared with
the FRDM, the rms error for the 2149 nuclear masses is
considerably reduced with WS, from 0.656 to 0.516 MeV. The
number of parameters in the model is reduced from 31 to 15
(including the two parameters γ and p used in the Strutinsky
procedure). One should note that several (about 12) of the

TABLE II. rms σ deviations between the data from AME2003 [6]
and predictions of several models (in MeV). The line σ (M) refers to
all the 2149 measured masses and the line σ (Sn) to the 1988 measured
neutron separation energies Sn. The calculated masses with FRDM
are taken from Ref. [2]. The masses with HFB-14 and HFB-17 are
taken from Refs. [3] and [4], respectively.

FRDM HFB-14 HFB-17 WS

σ (M) 0.656 0.729 0.581 0.516
σ (Sn) 0.399 0.598 0.506 0.346
Np 31 24 24 15
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FIG. 4. (Color online) (a) Deviations between the calculated
nuclear masses from the experimental data. (b) Calculated shell
corrections �E of nuclei (crosses). The squares denote the
microscopic energy of nuclei with the FRDM model (column Emic

of the table in Ref. [2]).

FRDM parameters were prefixed by considerations other than
masslike data before making the fit [1,2] and also that the
fit in the FRDM included data on fission barriers in addition
to masses. In this work, only the precisely measured nuclear
masses are involved in the fit. Compared with the standard
Hartree-Fock Bogoliubov (HFB) approach, the CPU time used
in the calculation of nuclear mass table is much shorter with
the proposed mass formula. The obtained rms error for the
1988 measured neutron separation energies Sn with our model
is obviously smaller than those of HFB calculations [3,4].

Figure 4(a) shows the deviations between the calculated
nuclear masses in this work from the experimental data. In
Fig. 4(b), we show the calculated shell corrections �E of
nuclei with our model and the microscopic energy (mainly
including the shell correction and the deformation energy)
obtained in the finite-range droplet model. For intermediate
and known heavy nuclei, the results of the two approaches
are comparable and both of them reproduce the known magic
numbers very well. The deviations are large for light nuclei
and superheavy nuclei. Our calculations show that the shell
corrections of nuclei with about N = 16 are much larger (in
absolute value) than those from the FRDM. As an example,
the shell correction of 24O is calculated and has a value of
−4.6 MeV with WS. Experimentally, it is thought that 24O
is a doubly magic nucleus from the observed decay energy
spectrum and the high-lying first excited 2+ state (above
4.7 MeV) [26], which is consistent with our calculations.
The obtained shell corrections with WS for 20C, 22C [27],
and 23N are −4.2, −5.1, and −4.3 MeV, respectively. Some
theoretical and empirical studies [26,28] have shown that in
the neutron-rich nuclei the magic numbers such as N = 14
or 16 can arise, which is in agreement with our calculations.
It is known that the shell correction strongly depends on the
single-particle potential adopted. The isotopic dependence of
the spin-orbit strength and the symmetry potential adopted

FIG. 5. (Color online) Potential energy surface E(β2, β4) of 82Sr.

in this work differs from that in the FRDM, which leads
to the different shell correction from the two models. Our
results for the neutron-rich nuclei with about N = 16 look
more reasonable qualitatively.

To further test the model, we study the potential energy
surface E(β2, β4) of some nuclei. In Ref. [29], the authors
observed the shape coexistence phenomena for nuclei 82Sr
and Kr isotopes from the low- and high-spin states. The shape
coexistence phenomena of these nuclei could be observed from
the corresponding potential energy surface. In Fig. 5, we show
the calculated potential energy surface of 82Sr. The coexistence
of oblate and prolate deformed configurations can be clearly
observed. The similar coexistence phenomena for Kr isotopes
can also be observed with our model.

B. Shell corrections of superheavy nuclei

The precise calculation for the shell corrections of su-
perheavy nuclei is of great importance for the synthesis of
new superheavy nuclei, especially for the prediction of the
location of the superheavy island. Furthermore, the fission
barriers of superheavy nuclei are roughly estimated by the
values of the corresponding shell corrections [18,30] since
in general the macroscopic fission barriers disappear at the
superheavy region. It is known that the fission barrier is a very
sensitive parameter in the realistic calculations for the survival
probabilities of the produced compound nuclei. It is therefore
necessary to investigate the shell corrections of superheavy
nuclei.

In Table III, we list the calculated shell corrections �E of
some nuclei. The corresponding microscopic energy obtained
in the FRDM are also listed for comparison. For superheavy
nuclei such as nucleus 292114, the microscopic energies
obtained with the FRDM are much lower (absolute value larger
about 2 ∼ 3 MeV) than our calculated �E. Because these
nuclei are (nearly) spherical in shape according to the calcula-
tions. It follows that the deviations of shell energies between
the two models are about 2 ∼ 3 MeV for nuclei around 292114.
Because the shell correction cannot be measured directly, it is
still difficult to quantitatively compare the reliability of model
through the calculated shell corrections of nuclei. In addition,
we study the central area of the superheavy island based on the
calculated shell energies. Figure 6 shows the contour plot of
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TABLE III. Shell corrections of some nuclei (in MeV). The data of FRDM are taken from the microscopic energies Emic of the table in
Ref. [2].

16O 24O 40Ca 48Ca 90Zr 132Sn 208Pb 270Hs 288114 292114 298114 294116

WS −0.7 −4.6 2.0 −1.2 −1.3 −9.8 −11.0 −6.4 −5.3 −6.1 −6.1 −6.2
FRDM 2.1 0.3 2.3 0.1 −1.6 −11.6 −12.8 −6.5 −7.8 −8.9 −7.6 −8.7

the calculated shell-correction energies of heavy nuclei. The
black squares in Fig. 6(a) denote the nuclei with microscopic
energies of −(6 ∼ 7) MeV in the FRDM calculations. One
can see that both models give similar magic numbers for
heavy nuclei. Figure 6(b) shows the shell corrections of
nuclei in the superheavy region. The crosses denote the
calculated nearly spherical nuclei (|β2| � 0.01) with WS. The
predicted superheavy island according to the obtained shell
corrections of nuclei looks flat. Along nuclei with Z = 114
or N = 178, one can see a slightly deeper valley in the
contour plot of shell corrections. The calculated deformations
of nuclei demonstrate that the nuclei with N = 184 are (nearly)
spherical in shape. However, the maximum shell correction
occurs at N = 178 instead of N = 184, which is consistent
with the results in Refs. [30,33]. The analysis about the shift
of the shell correction from N = 184 to N = 178 is given in
Ref. [30]. According to the calculations, the superheavy nuclei
288,289114 produced in the “hot” fusion reaction 48Ca + 244Pu
[31] (the corresponding compound nucleus is 292114) are close
to this central area of the island. The half-lives of these nuclei
are in the order of seconds [31], which is much shorter than
those of known stable nuclei. The measured short half-lives
of nuclei in superheavy region seem to indicate that the shell
corrections of these nuclei are probably not very large.

Figure 7 shows the deviations of the calculated nuclear
masses with the proposed model from the results of FRDM and
HFB-17. The shades denote the region with deviations smaller
than 2 MeV. The results for highly neutron-rich heavy nuclei
from the three models have large deviations. The results of our
model are relatively close to those of HFB-17 for most nuclei.

IV. SUMMARY

In this article we proposed a semiempirical nuclear mass
formula based on the macroscopic-microscopic approach. The
isospin effects in both macroscopic and microscopic part
of the formula are self-consistently considered, with which
the number of model parameters is considerably reduced
compared with the finite-range droplet model and the rms
deviation of the calculated masses from the 2149 measured
nuclear masses is reduced by 21% and falls to 0.516 MeV.
The CPU time used in the calculation of the nuclear masses
for the whole nuclear chart is much shorter than that with
the microscopic mass formula models. At the same time, the
consistency of the model parameters between the macroscopic
and microscopic parts greatly promotes the credibility of
extrapolations in the macroscopic-microscopic approach.

In order to extend the mass formula to superheavy nuclei
and the nuclei far from the β-stability line, we pay a special
attention to study the isospin and mass dependence of the
model parameters, including the symmetry energy coefficient
and the symmetry potential. Those studies are based on the
Skyrme energy-density functional approach together with the
extended Thomas-Fermi approximation. Since more suffi-
ciently considering the isospin effects of the model parameters,
the formula could systematically study superheavy nuclei and
the nuclei far from the β-stability line.

To further test the model, the appearance of new magic
number N = 16 in light neutron-rich nuclei and the shape
coexistence phenomena for some nuclei have been examined
with the model. Our results are in good agreement with
some experimental and theoretical studies. The predicted

FIG. 6. (Color online) (a) Shell-correction energies �E of nuclei. The black squares denote the nuclei with microscopic energies of
−(6 ∼ 7) MeV in the FRDM calculations. The straight line passes through the areas with the known heavy magic nuclei. (b) Shell-correction
energies of nuclei in the superheavy region. The crosses denote the nearly spherical nuclei (calculated |β2| � 0.01) and the triangles denote the
synthesized superheavy nuclei in the “hot” fusion reactions [31,32].
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FIG. 7. (Color online) Deviations of the calculated nuclear masses in this work from the results of FRDM (a) and HFB-17 (b), respectively.
The calculated masses with FRDM and HFB-17 are taken from Refs. [2] and [4], respectively. The shades denote the region with deviations
smaller than 2 MeV.

superheavy island according to the obtained shell corrections
of nuclei looks flat. Along nuclei with Z = 114 or N = 178,
we find a relatively deeper valley in the contour plot of shell
corrections. The shell corrections of nuclei around 292114 are
about −6 MeV and much smaller (in absolute value) than the
corresponding results from the finite-range droplet model. The
calculated nuclear masses for highly neutron-rich heavy nuclei
from the three different models have large deviations. The
results of our model are relatively close to those of HFB-17
for most nuclei.
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