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Quasi-elastic scattering and fusion with a modified Woods-Saxon potential
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The elastic and large-angle quasi-elastic scattering reactions were studied with the same nucleus-nucleus
potential proposed for describing fusion reactions. The elastic scattering angle distributions of some reactions
are reasonably well reproduced by the proposed Woods-Saxon potential with fixed parameters at energies much
higher than the Coulomb barrier. With an empirical barrier distribution based on the modified Woods-Saxon
potential and taking into account the influence of nucleon transfer, the calculated quasi-elastic scattering cross
sections of a series of reactions are in good agreement with the experimental data.
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I. INTRODUCTION

Heavy-ion quasi-elastic scattering and fusion reactions at
energies around the Coulomb barrier have been extensively
studied in recent decades, because they provide an ideal
opportunity to obtain the information of nuclear structure and
nucleus-nucleus interaction and to explore the mechanism of
heavy-ion reactions at near barrier energies that is of great
importance for the synthesis of super-heavy nuclei [1–9].
Based on the quantum tunneling concept, it is thought that the
quasi-elastic scattering (a sum of elastic scattering, inelastic
scattering, and transfer channels) is a good counterpart of the
fusion reaction in the sense that the former is related to the
reflection probability of a potential barrier while the latter is
related to the penetration probability [2]. In addition, it has
been shown that the fusion barrier distribution generated by
the coupling of the relative motion of the nuclei to internal
degrees of freedom can be extracted from precisely measured
fusion excitation functions [3,4]. The similarity of the barrier
distribution can be extracted from large-angle quasi-elastic
scattering excitation functions [5] that can be more easily
measured than the fusion excitation functions [10]. Therefore,
it is expected that both the fusion and quasi-elastic scattering
cross sections of a heavy-ion reaction at energies around
the Coulomb barrier can be unifiedly described by the same
nucleus-nucleus potential. However, in recently published
articles, Mukherjee et al. [11] found that the Woods-Saxon
nuclear potential cannot simultaneously reproduce precise
fusion and elastic scattering measurements of 12C + 208Pb,
and Muhammad and Hagino [12] found that the depth
parameter of the Woods-Saxon potential for describing the
fusion cross sections of 16O + 144Sm must be readjusted
to reproduce the experimental quasi-elastic scattering cross
sections of this reaction with the same coupled-channels
framework. To solve this discrepancy, it is necessary to find
a nucleus-nucleus potential for a unified description of the
scattering and fusion data in heavy-ion reactions. In addition,
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to give satisfying predictions of quasi-elastic scattering cross
sections for unmeasured reaction systems, it is required that
a nucleus-nucleus potential be found to describe quasi-elastic
scattering reactions systematically.

Studies of quasi-elastic scattering reactions and transfer
processes, especially of the behavior of the transfer prob-
abilities as functions of the distance of closest approach
or the incident energies, have attracted a lot of attention.
Some investigations show that the semiclassical method is
suitable for describing the heavy-ion scattering at large
reaction distance [13–16]. The transfer probability is expressed
as an exponential function of the distance between the
reaction partners Ptr ∝ exp(−2αRc) [13] in the semiclassical
approximation, where α is the transfer form factor and Rc

is the distance of closest approach between two nuclei. The
exponential dependence on Rc is a characteristic property of
tunneling [15]. At energies below the barrier the experimental
slopes are generally in good agreement with the predictions
of the model for one-nucleon transfer. At higher energies, the
measured slopes deviate from the calculated values, which is
often referred to as “slope anomaly” in addition to other types
of anomalies that are in connection with slopes obtained in
two-particle transfer reactions [17]. Some experiments show
an energy dependence of the slopes, and a clear trend of a
decrease of slope parameters as a function of increasing energy
was found in Refs. [16] and [17]. The transfer probabilities at
below barrier energies have been extensively studied while a
theoretical model for describing the slope parameters and the
transfer probabilities at energies near and above the Coulomb
barrier has not been well established yet. The study of the
transfer probability in the latter energy region is still required.
In addition, it is interesting to explore the relation between
the transfer probabilities and the barrier distribution because
the transfer probabilities generally peak in the vicinity of the
barrier energies [10].

In Ref. [18] we proposed a modified Woods-Saxon potential
model based on the Skyrme energy-density functional together
with the extended Thomas-Fermi approach. This model was
first proposed in Ref. [9] and a large number of fusion
reactions have been described satisfactorily well with an

0556-2813/2008/78(1)/014607(7) 014607-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.014607


NING WANG AND WERNER SCHEID PHYSICAL REVIEW C 78, 014607 (2008)

empirical barrier distribution that is based on the calculated
entrance channel potential. In this work, we try to describe the
heavy-ion elastic and quasi-elastic scattering with the same
potential for describing the fusion reactions. The article is
organized as follows: In Sec. II, the theoretical model for
the description of the elastic and quasi-elastic scattering is
introduced. In addition, some calculated results are compared
with experimental data. The summary and discussion are given
in Sec. III.

II. THEORETICAL MODEL FOR ELASTIC SCATTERING,
QUASI-ELASTIC SCATTERING, AND FUSION

In this section, we first briefly introduce the modified
Woods-Saxon potential and the elastic scattering is studied
with the potential. In addition, the empirical barrier distribution
is briefly introduced for describing fusion reactions. Then,
the quasi-elastic scattering and the transfer probabilities
are described with the empirical barrier distribution. Some
calculated results are also presented in this section.

A. Modified Woods-Saxon potential and elastic scattering at
above barrier energies

In Ref. [18] we proposed a Woods-Saxon potential model
based on the Skyrme energy-density functional together with
the extended Thomas-Fermi approach. The nucleus-nucleus
interaction potential reads as

V (R) = VN (R) + VC(R). (1)

Here, VN and VC are the nuclear and Coulomb interactions,
respectively. We take VC(R) = e2Z1Z2/R, and the nuclear

TABLE I. Parameters of the modified Woods-Saxon potential.

r0 (fm) c (fm) u0 (MeV) κ a (fm)

1.27 −1.37 −44.16 −0.40 0.75

interaction VN ,

VN (R) = V0

1 + exp[(R − R0)/a]
, (2)

with [19]

V0 = u0[1 + κ(I1 + I2)]
A

1/3
1 A

1/3
2

A
1/3
1 + A

1/3
2

, (3)

and

R0 = r0
(
A

1/3
1 + A

1/3
2

) + c. (4)

I1 = (N1 − Z1)/A1 and I2 = (N2 − Z2)/A2 in Eq. (3) are
the isospin asymmetries of the projectile and target nuclei,
respectively. In this potential, the depth of the potential V0

depends on the reaction system and the isospin asymmetries.
To distinguish it from the traditional Woods-Saxon potential
(with three parameters) in which the depth of the potential is
independent of the reaction system and the isospin asymme-
tries, we call the proposed potential (with five parameters)
“modified” Woods-Saxon potential. The parameters of the
modified Woods-Saxon (MWS) potential [18] are determined
by the entrance channel potentials of 66,996 reactions obtained
with the Skyrme energy-density approach and are listed in
Table I.

The proposed nucleus-nucleus potential is based on the
frozen density approximation. The time-dependent Hartree-
Forck (TDHF) calculations show that the nucleus-nucleus

FIG. 1. (Color online) Elastic
scattering angular distributions for
the reactions 12C + 208Pb, 16O +
208Pb, 12C + 90Zr, and 16O + 63Cu
at different laboratory energies.
The solid curves and the squares
denote the calculated results with
the modified Woods-Saxon poten-
tial and the experimental data, re-
spectively. The experimental data
are taken from Refs. [22–26].

014607-2



QUASI-ELASTIC SCATTERING AND FUSION WITH A . . . PHYSICAL REVIEW C 78, 014607 (2008)

potential depends on the incident energy at energies close to the
Coulomb barrier and, when the center-of-mass energy is much
higher than the Coulomb barrier energy, potentials deduced
with the microscopic theory identify with the frozen density
approximation [20]. We test the modified Woods-Saxon
potential for the description of heavy-ion elastic scattering
at energies much higher than the Coulomb barrier, because
the reaction time is relatively short and the frozen density
approximation seems to be applicable at these energies. Based
on the optical model, we solve the Schroedinger equation
for a given nucleus-nucleus potential using the traditional
Numerov method to obtain the partial-wave scattering matrix
that is used to describe the elastic scattering data [21]. The
real and imaginary parts of the optical potential adopted in
the calculations are described by the modified Woods-Saxon
potential.

We have calculated the elastic scattering angular distribu-
tions for the reactions 12C + 208Pb, 16O + 208Pb, 12C + 90Zr,
and 16O + 63Cu at different laboratory energies. The calcu-
lated results (solid curves) are shown in Fig. 1, and the
corresponding experimental data (squares) [22–26] are also
presented for comparison. The experimental data of the four
reactions at different energies are reasonably well reproduced
by the modified Woods-Saxon potential in which the potential
parameters are fixed.

We further test the MWS potential for the description of
heavy-ion fusion at above barrier energies. At these energies,
the fusion cross section is usually described by the classical
formula

σfus(Ec.m.) = πR2
f (1 − B/Ec.m.), (5)

with the fusion radius Rf and the height of the fusion barrier B.
Figure 2 shows the fusion excitation function of 16O + 208Pb.
Taking B to be the barrier height B0 (78.72 MeV) of the
modified Woods-Saxon potential, the fusion cross sections at
above barrier energies cannot be reproduced by the Eq. (5)
(see the dash-dotted curve in Fig. 2). To describe the fusion

e

FIG. 2. (Color online) Fusion excitation function of the reaction
16O + 208Pb. The dash-dotted and solid curves denote the calculated
results with Eq. (5) by taking B = B0 and B = Bm.p., respectively.
The solid circles denote the experimental data [27]. The inset shows
the effective weight function of the reaction.

cross sections satisfactorily, we introduced an empirical
barrier distribution to take into account the multidimensional
character of a realistic barrier due to the coupling to internal
degrees of freedom of the binary system in our previous paper
[9]. We proposed an effective weight function for describing
the barrier distribution,

Deff(B) =
{

D1(B) : B < Bx

Davr(B) : B � Bx
, (6)

where Davr(B) = (D1(B) + D2(B))/2 and Bx is the left cross
point of D1(B) and D2(B). D1(B) and D2(B) are two Gaussian
functions [9,18] that depend on the barrier height B0 of
the modified Woods-Saxon potential. The effective weight
function Deff of the reaction 16O+208Pb is shown in the
sub-figure of Fig. 2. Taking B to be the most probable barrier
height Bm.p. (74.43 MeV) according to the Deff , the fusion cross
sections at above barrier energies are reproduced reasonably
well (see the solid curve in Fig. 2). With the empirical barrier
distribution, the fusion cross sections and the mean barrier
heights of a large number of reactions can be reproduced
well [9,18,28].

From the above discussion, one finds that for the heavy-
ion elastic scattering at above barrier energies the modified
Woods-Saxon potential that is based on the frozen density
approximation gives nice results. But the fusion cross section
of the same reaction system can not be described well with the
potential and the barrier distribution needs to be introduced to
reproduce the fusion data. In a recently published article [29],
the authors proposed two optical potentials for describing the
reactions 12C + 208Pb and 16O + 208Pb, respectively. Both the
elastic scattering and fusion data can be satisfactorily described
with the potentials at energies around the Coulomb barrier. At
energies much higher than the Coulomb barrier (for example,
Elab = 192 MeV for 16O + 208Pb), the elastic scattering data
cannot be reproduced well by the potential. In this work,
we aim to find a nucleus-nucleus potential for describing the
reactions systematically.

FIG. 3. (Color online) Transfer probability of 16O + 232Th. The
squares denote the measured transfer probabilities [16] including the
channels of 1p, 1p1n, 1α, 2p, and 2p1n transfers to the target nuclei.
The crossed curve denotes the Gaussian function D2 in the empirical
barrier distribution.
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FIG. 4. (Color online) Fusion cross sections and quasi-elastic scattering cross sections as a function of energy for the reactions 16O + 144Sm
and 16O + 154Sm. The solid circles and squares denote the measured fusion cross sections σfus and quasi-elastic scattering cross sections,
respectively. The solid curves in (a) and (c) denote the calculated results for σfus. The crossed curves in (b) and (d) denote the calculated results
with Eq. (7). The dashed curves denote the results for Peff . The experimental data of fusion and quasi-elastic scattering are taken from Refs. [4]
and [5], respectively.

B. Description of large-angle quasi-elastic scattering

As a good counterpart of the fusion reaction, the large-
angle quasi-elastic scattering is studied to explore the nucleus-
nucleus potential. In this work, we explore the influence of the
empirical barrier distribution proposed for the fusion reactions
on the large-angle quasi-elastic scattering.

It is thought that the quasi-elastic differential cross section
can be expressed as a weighted sum of the eigenchannel
elastic differential cross sections under the adiabatic and iso-
centrifugal approximation [30,31]. Similar to the description
of fusion with the empirical barrier distribution, we describe
the large-angle quasi-elastic scattering cross section with

FIG. 5. (Color online) The
same as Fig. 4, but for the reactions
16O + 92Zr and 16O + 186W. The
experimental data are taken from
Refs. [4,5,34].
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FIG. 6. (Color online) The
same as Fig. 4, but for the reactions
32S + 208Pb and 16O + 116Sn. The
experimental data are taken from
Refs. [35–37].

the effective weight function Deff(B) at energies around the
Coulomb barrier,

dσqel

dσR

(Ec.m.) = Peff + Pcorr, (7)

with

Peff = 1

F0

∫ ∞

0
Deff(B)

dσel

dσR

(Ec.m., B)dB, (8)

and Pcorr is a small correction term. dσel
dσR

is the ratio of the
elastic cross section σel to the Rutherford cross section σR .
F0 is a normalization constant F0 = ∫

Deff(B)dB. Within the
semiclassical perturbation theory, a semiclassical formula for
the backward scattering (θ = π ) is given [2,32],

dσel

dσR

(Ec.m., B) =

1 + VN (Rc)

Ec.m.

√
Z1Z2e2

Ec.m.

π

a




× exp
[− 2π

h̄ω
(Ec.m. − B)

]
1 + exp

[− 2π
h̄ω

(Ec.m. − B)
] . (9)

Where the nuclear potential VN (Rc) is evaluated at the
Coulomb turning point,

VN (Rc) =
(

B − Z1Z2e
2

Rf

)(
1 + exp[(Rf − R0)/a]

1 + exp[(Rc − R0)/a]

)
, (10)

with the distance of the closest approach between two nuclei
Rc = Z1Z2e

2/Ec.m.. a is the diffuseness parameter of the
nuclear potential. Z1, Z2, and Ec.m. denote the charge numbers
of the projectile and target nuclei and the center-of-mass
energy, respectively. Rf and h̄ω are the barrier position and
curvature of the modified Woods-Saxon potential, respectively.

The correction term Pcorr in Eq. (7) takes into account
some effects in the quasi-elastic scattering that are not

involved in the empirical barrier distribution (which was
proposed for describing fusion reactions). In this work, we
assume that the correction term mainly comes from nucleon
transfer. In principle, the transfer process also affects the
fusion process and the effect of nucleon transfer may have
been implicitly taken into account in the empirical barrier
distribution. However the influence of nucleon transfer on
the quasi-elastic scattering may differ from the influence on
the fusion process, and a small correction term seems to be
required.

For the quasi-elastic scattering, we first investigate the
dependence of the transfer probabilities on the incident
energies. The transfer probabilities Ptr can be written as
Ptr = (dσtr/d�)/(dσR/d�), where dσtr/d� is the transfer
cross section [14]. At energies below the barrier the transfer
probability increases with increasing incident energies because
the distance of closest approach becomes small, leading
to an increase in the nuclear overlap. At above barrier
energies, on the contrary, the transfer probability decreases
with increasing energies because the increased overlap results
in more dissipative collisions that finally result in fusion [16].
For the transfer at energies below the barrier, we describe the
transfer probability using the traditional semiclassical method
that is mentioned previously in the Introduction. In this work,
only the one-neutron transfer channels are taken into account
for simplicity in the calculation of the transfer probability
at subbarrier energies. For the transfer at energies above the
barrier, we find the transfer probabilities are close to the
Gaussian function D2 of the empirical barrier distribution. For
example, in Fig. 3 the measured transfer probabilities for the
reaction 16O + 232Th are compared with the corresponding
Gaussian function D2 of this reaction at energies above the
barrier. The experimental data are in good agreement with D2

at above barrier energies.
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FIG. 7. (Color online) Quasi-
elastic scattering cross sections as a
function of energy for the reactions
12C + 142Nd, 16O + 232Th, 16O +
64Zn, and 32S + 110Pd. The squares
and the crossed curves denote
the measured and calculated
quasi-elastic scattering cross
sections, respectively. The dashed
curves denote the calculated
results for Peff .

Based on the above discussion, we write the transfer
probability

Ptr(Ec.m.) = f




P0 exp(−2αRc) : Ec.m. � Bm

D2(Ec.m.) : Ec.m. � Bh(
1 + (F − 1)Bh−Ec.m.

Bh−Bm

)
D2(Ec.m.) : Bm < Ec.m. < Bh

, (11)

with the strength factor f = 1 MeV. P0 is a normalization
constant given by P0 = D2(B0)/ exp(−2αZ1Z2e

2/B0) with
the transfer form factor α =

√
2µEb/h̄

2. µ is the reduced mass
of the transferred nucleons, Eb is the effective binding energy
of the transferred nucleons [33]. B0 is the barrier height of
the modified Woods-Saxon potential, Bm is the mean barrier
height of the barrier distribution,

Bm =
∫

B Deff(B) dB∫
Deff(B) dB

. (12)

We take Bh = 2B0 − Bm in this work. To have a smooth
function for the transfer probability Ptr from subbarrier
energies to above barrier energies, we introduce a function
for Ptr in the energy region Bm < Ec.m. < Bh with a factor
F = P0

D2(Ec.m.)
exp(−2αZ1Z2e

2/Bm) to link the two functions
P0 exp(−2αRc) and D2 describing the Ptr at subbarrier and at
above barrier energies, respectively.

We assume Pcorr ≈ Ptr. Both the fusion and quasi-elastic
scattering cross sections of a series of reactions have been
studied with the proposed approach in this work. Figures 4
to 6 show the calculated quasi-elastic scattering
and fusion cross sections for the reactions 16O +
144Sm, 16O + 154Sm, 16O + 92Zr, 16O + 186W, 32S + 208Pb,
and 16O + 116Sn. The experimental data [4,5,34–37] are

also presented for comparison. The solid circles and squares
denote the measured fusion cross sections σfus and large-angle
quasi-elastic scattering cross sections, respectively. The
solid curves in parts (a) and (c) of Figs. 4 to 6 denote
the calculated results for σfus with the proposed empirical
barrier distribution (see details in Refs. [9] and [18]). The
crossed curves in parts (b) and (d) denote the calculated
quasi-elastic scattering cross sections with Eq. (7). The
dashed curves denote the results for Peff , i.e., the contribution
of the empirical barrier distribution to the quasi-elastic
scattering. We find that both the fusion excitation functions
and the quasi-elastic scattering excitation functions of the
six reactions can be satisfactorily well reproduced. In Fig. 7
we compare the measured quasi-elastic scattering excitation
functions (squares) of the reactions 12C + 142Nd [38],
16O + 232Th [16], 16O + 64Zn [39], and 32S + 110Pd [40]
with the calculated results with Eq. (7) (crossed curves).
The calculated quasi-elastic scattering cross sections of the
four reactions 12C + 142Nd, 16O + 232Th, 16O + 64Zn, and
32S + 110Pd are in good agreement with the experimental
data. Figures 4 to 7 indicate that the modified Woods-Saxon
potential together with the empirical barrier distribution
can simultaneously describe the quasi-elastic scattering and
fusion of a number of reactions reasonably well.
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III. CONCLUSION AND DISCUSSION

In this work, we have studied the heavy-ion elastic and
large-angle quasi-elastic scattering with the same nucleus-
nucleus potential proposed for describing fusion reactions. The
elastic scattering angle distributions of a series of reactions
at energies much higher than the Coulomb barrier can be
reasonably well reproduced by the modified Woods-Saxon
potential that is based on the frozen density approximation
systematically. With the same potential the fusion cross
sections at above barrier energies cannot be reproduced and
an empirical barrier distribution (which takes into account the
coupling of other degrees of freedom) is required to reproduce
the fusion data. It seems that the coupling of other degrees
of freedom to the relative motion of the nuclei is obvious
in heavy-ion fusion processes whereas the frozen density
approximation is applicable in the elastic scattering process

at energies much higher than the Coulomb barrier. With the
empirical barrier distribution function based on the modified
Woods-Saxon potential, the fusion cross sections of a series
of reactions have been well reproduced. Further, with the
same empirical barrier distribution and taking into account
the correction term that mainly comes from the nucleon
transfer, the calculated large-angle quasi-elastic scattering
cross sections of these reactions are in good agreement with
the experimental data.
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