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Abstract

The Skyrme energy density functional has been applied to the study of heavy-ion fusion rea
The barriers for fusion reactions are calculated by the Skyrme energy density functional with prot
neutron density distributions determined by using restricted density variational (RDV) method with
same energy density functional together with semi-classical approach known as the extended semi
Thomas–Fermi method. Based on the fusion barrier obtained, we propose a parametrization of th
ical barrier distribution to take into account the multi-dimensional character of real barrier and then
it to calculate the fusion excitation functions in terms of barrier penetration concept. A large num
measured fusion excitation functions spanning the fusion barriers can be reproduced well. The com
between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-clo
excess neutron effects is studied.
 2006 Elsevier B.V. All rights reserved.

1. Introduction

A large number of fusion excitation functions have been accumulated in recent de
[1–3], which provides a possibility for a systematic study on fusion reactions. Newton et
analyzed a total of 46 fusion excitation functions at energies above the average fusion b
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using the Woods–Saxon form for the nuclear potential in a barrier passing model of fusion
found that the empirical diffuseness parametersa ranging between 0.75 and 1.5 were cons
erably larger than those obtained from elastic scattering data and the deduceda showed strong
increase with increasing the charge productZ1Z2. Thus, it results in a certain difficulty for giv
ing satisfied predictions of fusion cross sections for unmeasured reaction systems. The
coupled channel model is successful for describing fusion excitation function of heavy-ion
tion at energies near fusion barrier. However, with the increasing of the neutron excess
charges (the productZ1Z2) of two nuclei, the fusion coupled channel model encounters a l
difficulties due to a very large number of degrees of freedom involved. In order to carry out
tematic study of fusion excitation functions, a simple and useful approach seems to be re
A semi-empirical approach in which the quantum penetrability of Coulomb barrier is calcu
by using the concept of barrier distribution arising due to the multi-dimensional character
real nucleus–nucleus interaction [5–7] is very helpful in this aspect. Thus, a reasonabl
metrization of the weighing function describing the barrier distribution based on the inter
potential in the entrance channel seems to be very useful.

In [8] the interaction potential in the entrance channel for fusion reactions was calc
based on the semi-classical expressions of the Skyrme energy density functional [9–11]
calculation of the interaction potential, which is the difference between the energy of the
system and the energies of individual projectile and target, the density distributions of th
jectile and target are required. In [8] the density distributions of the projectile and target
determined by Hartree–Fock–Bogoliubov calculations. According to the Hohenberg and
theorem [12], the energy of aN -body system of interaction fermions is a unique functiona
local density. In the framework of the semi-classical extended Thomas–Fermi (ETF) ap
together with a Skyrme effective nuclear interaction such a functional can be derived sys
cally. The density functional theory is widely used in the study of the nuclear ground state
provides us with a useful balance between accuracy and computation cost allowing lar
tems with a simple self-consistent manner. Thus, it is very suitable to perform the calcula
the entrance-channel potential and the densities of reaction partners based on the same
energy density functional. Of course, the different density distributions obtained by differe
proaches will influence the entrance-channel potential. While a self-consistent treatment f
density distribution and the entrance-channel potential seems to be more reasonable.

In this work, the Skyrme energy density functional is applied to make a systematic stu
fusion reactions. Firstly, we will use the semi-classical expressions of the Skyrme energ
sity functional to study the energies and the density distributions of a series of nuclei
restricted density variational (RDV) method [10,11,13,14]. Secondly, with the density di
utions obtained, the entrance-channel potentials of a series of fusion reactions are cal
Then, based on the entrance-channel potential obtained, a parametrization of the empir
rier distribution is proposed to take into account the multi-dimensional character of real b
and then apply it to calculate the fusion excitation functions in terms of barrier penetratio
cept. The paper is organized as follows: In Section 2, the properties of ground state of
and the entrance-channel potential are studied in the framework of the Skyrme energy
functional. In Section 3, an approach to calculate fusion excitation functions is introduce
a large number of calculated results are presented. Finally, the summary and discussion a
in Section 4.
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2. The calculations of fusion barrier

The energy density functional theory is widely used in many-body problems. In the f
work of the semi-classical extended Thomas–Fermi (ETF) approach together with a S
effective nuclear interaction, the energy density functional can be derived systematica
take the Skyrme–Hartree–Fock (Skyrme–HF) formalism of the energy density functional
and based on it we calculate the proton and neutron densities of nuclei by means of re
density variational method [10,11,13,14]. With the neutron and proton densities determ
this way we calculate the fusion barrier for fusion reaction based on the same energy
functional.

2.1. Skyrme energy density functional

The total binding energy of a nucleus can be expressed as the integral of energy
functional [9,11]

E =
∫

H dr. (1)

The energy density functionalH includes the kinetic, nuclear interaction and Coulomb inte
tion energy parts

H = h̄2

2m

[
τp(r) + τn(r)

] +Hsky(r) +Hcoul(r). (2)

For the kinetic energy part, the extended Thomas–Fermi (ETF) approach including all te
to second order in the spatial derivatives (ETF2), is applied as that was done in Ref. [8]. W
effective-mass form factor [15]

fi(r) = 1+ 2m

h̄2

{
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[
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}
, (3)

the kinetic energy densitiesτ for protons (i = p) and neutrons (i = n) are given by

τi(r) = 3

5

(
3π2)2/3

ρ
5/3
i + 1

36

(∇ρi)
2
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3
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)2

, (4)

whereρi denotes the proton or neutron density of the nucleus andρ = ρp + ρn, W0 denotes the
strength of the Skyrme spin–orbit interaction. The nuclear interaction part with Skyrme in
tion Hsky reads

Hsky(r) = t0

2

[(
1+ 1

2
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)(
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)][
(∇ρn)

2 + (∇ρp)2]

− W2
0

4

2m

h̄2

[
ρp

fp

(2∇ρp + ∇ρn)
2 + ρn

fn

(2∇ρn + ∇ρp)2
]
, (5)

wheret0, t1, t2, t3, x0, x1, x2, x3, andα are Skyrme-force parameters [8,11]. The last term
the right hand of expression (5) is the semi-classical expansions (up to second order ih̄) of
spin–orbit densities [9]. The Coulomb energy density can be written as the sum of the dire
exchange contribution, the latter being taken into account in the Slater approximation,

HCoul(r) = e2

2
ρp(r)

∫
ρp(r′)
|r − r′|dr′ − 3e2

4

(
3

π

)1/3(
ρp(r)

)4/3
. (6)

From the above expressions (1)–(6), one can see that the total energy of a nuclear sys
be expressed as a functional of protons and neutrons densities [ρp(r), ρn(r)] under the Skyrme
interaction associated with the ETF approximation.

2.2. The neutron and proton densities of nuclei

By minimizing the total energy of the system given by expression (1), the neutron and p
densities can be obtained, that is to solve the variational equation

δ

δρi

∫ {
H

[
ρn(r), ρp(r)

] − λnρn(r) − λpρp(r)
}
dr = 0, (7)

with the Lagrange multipliersλn andλp to ensure the conservation of neutron and proton n
ber. This density variational problem has been solved in two different ways in the past:
by resolving the Euler–Lagrange equation [13,14] resulting from Eq. (7) or by carrying o
variational calculation in a restricted subspace of functions [10,11,13,14]. In this work we
the neutron and proton density distributions of a nucleus as spherical symmetric Fermi fun

ρi(r) = ρ0i

[
1+ exp

(
r − R0i

ai

)]−1

, i = {n,p}. (8)

For the three quantitiesρ0i , R0i andai in the equation, only two of them are independent beca
of the conservation of particle numberNi = ∫

ρi(r) dr, Ni = {N,Z}. For example,ρ0p can be
expressed as a function ofR0p andap,

ρ0p � Z

{
4

3
πR3

0p

[
1+ π2

(
ap

R0p

)2]}−1

(9)

with high accuracy [16] whenR0p � ap. Here,R0p, ap, R0n, an are the radius and diffusene
for proton and neutron density distributions, respectively.

By using optimization algorithm, one can obtain the minimal energyEb as well as the corre
spondingR0p, ap, R0n, an for the neutron and proton density distributions.

The Skyrme force SkM* [17] is adopted in the calculations since SkM* is very succe
for describing the bulk properties and surface properties of nuclei. It is a well known fac
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ETF calculations with a reasonable effective interaction reproduce experimental binding
gies with a very good accuracy, when Strutinski-type shell corrections and pairing corre
are taken into account. And the obtained charge root-mean-square radii in this work fo
closed nuclei are very close to the corresponding experimental data [18,19]. In addition w
made a comparison between the results with RDV method and the Skyrme–HF method a
that the surface diffuseness obtained by RDV method are little smaller than that by Skyrm
calculations. It is due to the neglect of the higher order term corrections in the extended Th
Fermi (ETF) approach [10]. We have made a check that the surface diffuseness calculat
RDV method increases if all terms up to fourth order in the spatial derivatives in ETF e
density functional (ETF4) are taken into account.

2.3. The calculations of fusion barriers

The interaction potentialVb(R) between reaction partners can be written as

Vb(R) = Etot(R) − E1 − E2, (10)

whereR is the center-to-center distance between two nuclei, theEtot(R) is the total energy o
the interacting nuclear system,E1 andE2 are the energies of individual nuclei (projectile a
target), respectively. The interaction potentialVb(R) is also called entrance-channel potentia
Ref. [8] or fusion barrier [20,21], in the following we take the term of fusion barrier. TheEtot(R),
E1, E2 are calculated with the same energy-density functional as that is used in the calcu
of nuclear densities,

Etot(R) =
∫

H
[
ρ1p(r) + ρ2p(r − R), ρ1n(r) + ρ2n(r − R)

]
dr,

E1 =
∫

H
[
ρ1p(r), ρ1n(r)

]
dr, (11)

E2 =
∫

H
[
ρ2p(r), ρ2n(r)

]
dr. (12)

Here,ρ1p, ρ2p, ρ1n andρ2n are the frozen proton and neutron densities of the projectile
target, determined in the previous section.

For calculating the nuclear interaction energies and Coulomb energies, multi-dimensio
tegral [22] is performed. For a certain reaction system, the fusion barrier is calculated in a
from R = 7 fm to 20 fm with step of�R = 0.25 fm. Fig. 1 shows the fusion barrier for the rea
tion 28Si + 92Zr. The solid curve denotes the results based on the density distributions ob
by RDV method with ETF2. The dotted curve denotes the proximity potential [23]. The re
with the density determined by restricted density variational calculations are very close to
of proximity potential at the region where the densities of two nuclei do not overlap.

The fusion barriers for more than 80 fusion systems (Z1Z2 > 150) are calculated based
ETF2. Part of them are listed in Table 1. Table 1 lists the barrier heightB0, radiusR0 (see Fig. 1)
and the curvaturēhω0 of the barrier for a series of reactions. Here the curvature of the ba
h̄ω0, is obtained approximately through fitting the barrier at the region fromR0 − 1.25 fm to
R0 + 1.25 fm by an inverted parabola. From the table, one can find that the curvature
fusion barrier increases and theQ-value for complete fusion reaction decreases with the incr
of productZ1Z2.

For exploring the influence of orderh̄4 terms [10,11], full fourth order ETF (ETF4) is applie
to calculate both the densities and the fusion barriers for reactions28Si + 28Si, 40Ca+ 48Ca,
c
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Table 1
The fusion barriers of a series of reactions with ETF2 approach

Reaction R0 (fm) B0 (MeV) h̄w0 (MeV) Z1Z2 Q-value (MeV) Reference
28Si+ 28Si 8.75 29.86 2.37 196 10.91 [32]
12C+ 92Zr 9.75 33.34 2.10 240 0.94 [1]
16O+ 70Ge 9.25 36.52 2.84 256 2.51 [33]
16O+ 72Ge 9.5 36.27 2.37 256 6.30 [33]
16O+ 73Ge 9.5 36.16 2.44 256 8.84 [33]
16O+ 74Ge 9.5 36.08 2.50 256 10.61 [33]
16O+ 76Ge 9.5 35.80 2.63 256 10.51 [33]
12C+ 128Te 10.25 40.98 2.50 312 −0.91 [34]
16O+ 92Zr 9.75 43.88 2.86 320 −3.94 [1]
16O+ 112Cd 10.0 51.12 3.19 384 −9.91 [35]
27Al + 70Ge 9.75 57.37 3.26 416 −5.17 [38]
27Al + 72Ge 9.75 57.05 3.39 416 −4.21 [38]
27Al + 73Ge 9.75 56.87 3.46 416 −2.90 [38]
27Al + 74Ge 9.75 56.72 3.51 416 −3.21 [38]
27Al + 76Ge 10.0 56.31 3.01 416 −2.39 [38]
35Cl + 54Fe 9.5 61.89 3.67 442 −17.77 [36]
16O+ 144Nd 10.5 61.35 3.27 480 −22.43 [39]
12C+ 204Pb 11.0 59.80 3.19 492 −28.40 [44]
16O+ 144Sm 10.5 63.62 3.27 496 −28.55 [2]
17O+ 144Sm 10.5 63.26 3.41 496 −24.43 [2]
16O+ 147Sm 10.5 63.31 3.37 496 −24.65 [40]
16O+ 148Sm 10.5 63.20 3.41 496 −23.09 [2]
16O+ 149Sm 10.5 63.08 3.46 496 −21.71 [40]
16O+ 150Sm 10.5 62.96 3.49 496 −20.21 [40]
16O+ 154Sm 10.75 62.43 3.07 496 −16.43 [2]
16O+ 166Er 10.75 67.83 3.45 544 −25.13 [41]
28Si+ 92Zr 10.0 74.20 3.97 560 −28.12 [1]
16O+ 186W 11.0 72.26 3.52 592 −21.30 [2]
32S+ 89Y 10.25 82.31 3.76 624 −36.58 [42]
33S+ 90Zr 10.25 84.12 3.87 640 −39.76 [43]
33S+ 92Zr 10.25 83.74 3.97 640 −35.51 [43]
16O+ 208Pb 11.25 78.46 3.54 656 −46.49 [3]
35Cl + 92Zr 10.25 88.61 4.14 680 −39.37 [1]
19F+ 197Au 11.25 85.21 3.69 711 −35.92 [44]
16O+ 232Th 11.5 84.47 3.68 720 −36.53 [45,46]
32S+ 110Pd 10.5 94.00 4.13 736 −35.37 [47]
36S+ 110Pd 10.5 92.85 4.28 736 −38.01 [47]
19F+ 208Pb 11.25 87.44 3.87 738 −50.07 [48]
40Ca+ 90Zr 10.25 103.74 4.31 800 −57.27 [49]
40Ca+ 96Zr 10.5 102.22 4.28 800 −41.13 [49]
50Ti + 90Zr 10.5 111.16 4.49 880 −64.73 [50]
32S+ 154Sm 11.0 120.22 4.47 992 −60.69 [51]
28Si+ 178Hf 11.25 120.65 4.41 1008 −64.77 [52]
29Si+ 178Hf 11.25 120.31 4.42 1008 −65.70 [52]
30Si+ 186W 11.5 122.14 4.24 1036 −70.22 [44]
31P+ 175Lu 11.25 126.97 4.46 1065 −70.45 [52]
28Si+ 198Pt 11.5 128.04 4.38 1092 −78.75 [53]
32S+ 181Ta 11.25 138.15 4.56 1168 −80.58 [54]

(continued on next page)
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Table 1 (continued)

Reaction R0 (fm) B0 (MeV) h̄w0 (MeV) Z1Z2 Q-value (MeV) Reference
32S+ 182W 11.25 140.02 4.52 1184 −84.93 [55]
132Sn+ 64Ni 11.5 162.75 4.61 1400 −111.05 [56]
40Ca+ 208Pb 11.75 186.57 4.62 1640 −136.69 [57]
48Ca+ 208Pb 12.0 183.17 4.43 1640 −153.80 [57]

Fig. 1. The entrance-channel fusion barrier for28Si+ 92Zr.

16O + 208Pb, and48Ca+ 208Pb. The similar work had been done by Dobrowolski et al. in [2
We find that when thēh4 terms [10,11] are included in the determination of the neutron
proton densities, the surface diffuseness of densities of nuclei increases and thus the h
fusion barrier calculated is lower (about 1–2 MeV) than those with ETF2. The fusion ba
for these reactions calculated with different approach are shown in Fig. 2. The dotted curv
the solid curves denote the results with ETF2 and ETF4, respectively, and the crossed
and the dashed curves denote the results of proximity potential and those of the analytic
proposed in [21], respectively. Our calculation results of barriers with ETF4 are very clo
the analytical form in [21]. We find that the barriers calculated with ETF2 are more close
proximity potential for light and medium-heavy systems (for example,Z1Z2 < 680), while the
barrier calculated with ETF4 are more close to those of proximity potential for heavy syste
implies that including fourth order terms of ETF approach is important in improving the su
diffuseness for heavy nuclei.

Fig. 3 shows the barrier heightsB0 of the selected systems with ETF2 approach and
relative deviations ofB0 from the proximity potentialsBprox [23] as function ofZ1Z2. The circles
and crosses in Fig. 3(a) denote the results of our calculations and those of proximity po
respectively. Our calculation results for the barriers are quite close to the proximity potent
the relative deviations are less than 2.5% (see Fig. 3(b)) generally. From the figure one can
see that the barrier heights linearly increase with productZ1Z2. The solid line in Fig. 3(a) is

a linear function fit of the calculation results, i.e.Bfit = e2Z1Z2
Rfit

+ V0 with Rfit = 13.7 fm and
V0 = 13.0 MeV.
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Fig. 2. The fusion barriers for28Si + 28Si, 40Ca+ 48Ca,16O + 208Pb and48Ca+ 208Pb. The dotted curves and th
solid curves denote the results with ETF2 and ETF4 approach, respectively, and the crossed curves and the das
denotes the results of proximity potential and those of the analytical form proposed in [21], respectively.

Fig. 3. (a) The barrier heightsB0 for a series of reaction systems and (b) the relative deviations from the resu
proximity potential. The circles and crosses in (a) denote the calculation results with RDV and proximity po
respectively. The solid line is the linearly fitting to our calculations.

3. Fusion excitation functions

3.1. The parametrization of barrier distribution

According to Wong’s formula [24], the fusion excitation function for penetrating a para
barrier can be expressed as

2 ( [ ])

σ

(1)
fus (Ec.m.,B0) = h̄ω0R0

2Ec.m.

ln 1+ exp
2π

h̄ω0
(Ec.m. − B0) , (13)
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whereEc.m. denotes the center-of-mass energy,B0, R0 and h̄ω0 are the barrier height, radiu
and curvature, respectively. This expression is based on the one-dimensional barrier pen
model. The one-dimensional barrier penetration model with empirically determined po
parameters is successful in describing the fusion excitation functions for light systems and
systems at energies above the barrier with some exceptions, but fails in describing sub
fusion for heavy systems. It is found that for sub-barrier fusion of heavy systems, the me
fusion cross sections are of up to several orders of magnitude higher than the prediction
model.

Taking into account the multi-dimensional character [7] of the realistic barrier we may
duce the barrier distribution in order to calculate the total fusion cross sections. Then, the
excitation function in terms of barrier penetration concept is given by

σfus(Ec.m.) =
∞∫

0

D(B)σ
(1)
fus (Ec.m.,B)dB, (14)

whereσ
(1)
fus (Ec.m.,B) is the fusion excitation function for the barrierB based on one-dimension

barrier penetration,D(B) is a weighing function to describe the barrier distribution. Here
replace the barrier heightB0 in Wong’s formula Eq. (13) byB. The distribution functionD(B)

satisfies
∞∫

0

D(B)dB = 1. (15)

D(B) is often taken to be continuous and symmetric distributions of rectangular or Ga
shapes [25–27]. The Wong’s formula is a special case when a delta distribution (D(B) = δ(B −
B0)) is taken.

In this work, we propose a parametrization of the weighing function based on the fusio
rier obtained in the previous section. That is that we try to propose a macroscopic em
barrier distribution rather than explicitly taking into account the coupling of the fusion moti
internal degrees of freedom as that is done in the fusion coupled channel model [28]. Co
ing the weighing functions, we first investigate the shape of barrier distributions extracted
experiments. We find in most cases the barrier distributions are not symmetric. For exam
Fig. 4 solid circles show the experimental fusion barrier distribution of16O+ 92Zr [30]. One can
see that the fusion barrier distribution of the reaction system is asymmetric, its left side is s
than the right side. It indicates that only one Gaussian distribution is not good enough to d
the fusion barrier distribution. Motivated by the shape of the barrier distribution extracted
experiments, we consider the weighing function to be a superposition of two Gaussian fun
Two Gaussian distributionsD1(B) andD2(B) are proposed as

D1(B) =
√

γ

2
√

πw1
exp

[
−γ

(B − B1)
2

(2w1)2

]
(16)

and

D2(B) = 1

2
√

πw2
exp

[
− (B − B2)

2

(2w2)2

]
, (17)

with
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Fig. 4. The fusion barrier distribution for16O + 92Zr. The distribution is evaluated with�Ec.m. = 1.8 MeV. The solid
dots and solid curve denote the experimental data and our calculation results, respectively.

w1 = 1

4
(B0 − Bc), (18)

w2 = 1

2
(B0 − Bc), (19)

B1 = Bc + w1, (20)

B2 = Bc + w2. (21)

The barrier heightB0, radiusR0 and curvaturēhω0 are obtained from Table 1. TheBc = f B0 is
the effective barrier height taking into account the coupling effects to other degrees of fre
such as dynamical deformation, nucleon transfer, etc. We take the reducing factorf = 0.926. The
γ in D1(B) is a factor which influence the width of the distributionD1(B). The larger theγ value
is, the narrower the distribution is. For the fusion reactions between nuclei with non-closed
but near theβ-stability line, we takeγ = 1; for the reactions with neutron closed-shell nuc
or neutron-rich nuclei the value ofγ is calculated by a parameterized formula which will
discussed in the following subsection. From the expression of (16) and (17) one can find t
peaks and the widths ofD1(B) andD2(B) only depend on the height of the fusion barrierB0 ex-
cept theγ in D1(B). The peaks of two Gaussian distributions locate at different energies be
Bc andB0. For light systems, the width of the distribution becomes very small and thus it is
close to delta distribution, in consistent with the one-dimensional penetration model. BothD1(B)

andD2(B) satisfy Eq. (15). Further we introduceDavr(B) = (D1(B) + D2(B))/2. Davr(B) also
satisfies Eq. (15). In Fig. 5 we show the parameterized weighing function of16O + 186W. The
dashed and dot-dashed curves denote Gaussian distributionsD1(B) and D2(B), respectively.
The solid curve denotes theDavr(B). There are two crossing points betweenD1(B) andD2(B)

(or Davr(B)) at both sides ofDavr(B). The left one is located atBx (see Fig. 5). We notice tha
the left side ofDavr(B) is too flat and does not fit the shape of the barrier distribution extra
from experimental data well (for example, see the shape shown in Fig. 4). So we prop
effective weighing function

Deff(B) =
{

D1(B): B < Bx,

D (B): B � B
(22)
avr x
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Fig. 5. The weighing function for the fusion reaction of16O + 186W. The dashed and dot-dashed curves
note Gaussian distributionsD1(B) and D2(B), respectively. The solid curve denotes the average value,
Davr(B) = [D1(B)+D2(B)]/2. The vertical dotted lines denote the positions ofB0 andBc , respectively. The arrowBx

denotes the cross point between the curvesD1(B) andD2(B) at the left side of the peak ofDavr(B).

(with
∫

Deff(B)dB ≈ 1). We notice that the distributionD1(B) plays a main role for sub-barrie
fusion andDavr(B) contributes more to the fusion at energies near and above the barrier.

With theDeff(B) we can, in principle, calculate the fusion cross sections by the express

σfus(Ec.m.) =
∞∫

0

Deff(B)σ
(1)
fus (Ec.m.,B)dB. (23)

However, theDeff(B) does not satisfy Eq. (15) exactly because there is a small differenc
tweenD1(B) andDavr(B) in the left side of theBx (see Fig. 5). To remedy this defect, we repla
the expression (23) by the following expression in the calculation of fusion cross sections

σfus(Ec.m.) = min
[
σ1(Ec.m.), σavr(Ec.m.)

]
. (24)

Here theσ1(Ec.m.) andσavr(Ec.m.) are calculated by expression (14) withD(B) = D1(B) and
D(B) = Davr(B), respectively. Now the normalization condition Eq. (15) is always satisfie
the weighing function adopted in the calculations of fusion cross sections at eachEc.m.. We
have checked that the fusion cross sections calculated with the expression (24) are ve
to those calculated with the expression (23) when theγ is not too large. In fact, we find tha
the results calculated with Eq. (24) is in better agreement with experimental data. To che
barrier distribution obtained with our model, we also show the barrier distribution obtained
the calculation in Fig. 4 by the solid curve. The good agreement between experimental d
calculation results indicates the parametrization of the weighing function is quite reasona

3.2. Fusion reactions between nuclei with non-closed-shell but near β-stability line

In this subsection, the fusion excitation functions for about 30 reaction systems are i
gated. For these reaction systems, the projectile and target nuclei are non-closed-shell
theβ-stability line (the shell-closure effects of16O are neglected in this work). The shell effe
and excess neutron effect are weak for this kind reaction systems. Fig. 6 shows the fus
citation functions of16O + 186W and28Si + 92Zr. From the figure one can find that at energ
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Fig. 6. The fusion excitation functions for16O + 186W and28Si + 92Zr. The dashed and the dot-dashed curves de
the cross sectionsσ1(Ec.m.) andσavr(Ec.m.) calculated withD(B) = D1(B) andD(B) = Davr(B), respectively.

Fig. 7. The fusion excitation functions for12C, 16O, 33S, 35Cl + 92Zr and 16O + 112Cd, 144Nd, 166Er, 232Th.
The squares denote the experimental data and the solid curves denote the calculation results withγ = 1.

above the barrierσavr (dot-dashed curves) is more close to the experimental data, while at
gies below the barrier,σ1 (dashed curves) is preferable. From Fig. 6(c) and (f) one can se
all experimental data spanning the fusion barrier for both16O + 186W and28Si + 92Zr can be
reproduced well. Fig. 7 to Fig. 9 show more calculation results and experimental data fo
parison for this kind fusion reactions. All the fusion excitation functions can be reproduced
well, which indicates our parametrization ofD1(B) andD2(B) is quite useful and reasonable
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Fig. 8. The fusion excitation functions for19F + 197Au, 28Si + 28Si, 28,29Si + 178Hf, 28Si + 198Pt, 28Si + 186W,
31P+ 175Lu, 32S+ 181Ta and32S+ 182W. The squares denote the experimental data and the solid curves den
calculation results withγ = 1.

Fig. 9. The fusion excitation functions for16O, 27Al + 70,72,73,74,76Ge. The squares denote the experimental data
the solid curves denote the calculation results withγ = 1.

3.3. Fusion reactions between nuclei with neutron-shell-closure or neutron-rich nuclei

The shell effect for neutron closed-shell nuclei and the excess neutron effect for ne
rich nuclei play an important role in the fusion reactions at energies below the fusion b
Fig. 10(a) shows the fusion excitation function of33S + 90Zr. The dashed curve denotes t



M. Liu et al. / Nuclear Physics A 768 (2006) 80–98 93

tal
th

d that

sections
n

edicted

atically
-shell
tions
alculation
n-rich
ibuted
ce the
strong

pose an

d-

e
n). In

asses
or

e
tem
Fig. 10. The fusion excitation functions for reactions33S+ 90Zr, 32S+ 154Sm. The squares denote the experimen
data. The solid and dashed curves denote the calculation results with theγ values obtained by formula (25) and wi
γ = 1, respectively.

calculation results withγ = 1 and the squares denote the experimental data. One can fin
at the energies near and above the barrierB0 the calculation results withγ = 1 are in good
agreement with the experimental data. However, at sub-barrier energies the fusion cross
are over-predicted withγ = 1. Through adjusting theγ value, we find that the fusion excitatio
function at sub-barrier energies for33S+ 90Zr can be reproduced reasonably well whenγ = 3.6.
Fig. 10(b) shows the fusion excitation function of the neutron-rich nuclear fusion reaction32S+
154Sm. For this reaction, the fusion cross sections at sub-barrier energies are under-pr
whenγ = 1. For this case, a smallγ should be taken so that the distributionD1(B) is broaden and
thus the fusion cross sections are enhanced at sub-barrier energies. We find that whenγ = 0.5 the
sub-barrier fusion cross sections can be reproduced well (see Fig. 10(b)). Through system
analyzing the fusion excitation functions of reactions between nuclei with neutron closed
but near theβ-stability line and those with neutron-rich nuclei, we find that fusion cross sec
are suppressed for the former cases and enhanced for the latter cases compared to the c
results withγ = 1. The enhancement of fusion cross sections for reactions with neutro
nuclei compared with non-neutron-rich nuclei has been found in Refs. [7,29,30]. It is attr
to the neutron transfer and neck formation which lower the fusion barrier and thus enhan
fusion cross sections at sub-barrier energies [7,29]. For neutron closed-shell nuclei, the
shell effect suppresses the lowering barrier effect. Based on above discussion we pro
empirical formula for theγ values used in the weighing functionD1(B) for systems with the
sameZ1 andZ2,

γ = 1− c0�Q + 0.5
(
δ

prog
n + δ

targ
n

)
, (25)

where�Q = Q − Q0 denotes the difference between theQ-value of the system under consi
ering for complete fusion and that of the reference system. TheQ0 is theQ-value of reference
system.c0 = 0.5 MeV−1 for �Q < 0 cases andc0 = 0.1 MeV−1 for �Q > 0 cases.δproj(targ)

n = 1
for neutron closed-shell projectile (target) nucleus andδ

proj(targ)
n = 0 for non-closed cases (th

shell-closure effects of16O are neglected in this work as mentioned in the above subsectio
addition, we introduce a truncation forγ value, i.e.γ should not be smaller than 0.5.

The reference system is chosen to be the reaction system with nuclei along theβ-stability line.
More precisely, we do it as follows: from the periodic table we find the relative atomic m
of corresponding elements of projectile and target (M

proj
a.m., M

tag
a.m.), then the mass numbers f

reaction partners of reference system (A
proj
0 andA

tag
0 ) can be obtained by inequalityAi

0 − 1 <

Mi
a.m. � Ai

0. i denotes projectile (i = proj) or target (i = targ) nuclei. For example, for thre
fusion reactions16O+ 90,92,96Zr, 16O+ 92Zr reaction system is taken to be the reference sys
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Table 2
The�Q andγ values for a series reactions with neutron closed-shell nuclei or neutron-rich nuclei

Reaction �Q (MeV) γ Reference
33S+ 90Zr −4.25 3.6 [43]
50Ti + 90Zr −3.25 3.6 [50]
35Cl + 54Fe −6.58 4.8 [36]
16O+ 208Pb 0 1.5 [3]
19F+ 208Pb 0 1.5 [44]
17O+ 144Sm −0.21 1.6 [2]
32S+ 154Sm 9.80 0.5 [51]
32S+ 110Pd 4.13 0.6 [47]
40Ca+ 96Zr 10.00 0.5 [49]
132Sn+ 64Ni 7.50 0.7 [56]
16O+ 144Sm −3.91 3.5 [2]
16O+ 147Sm 0 1.0 [40]
16O+ 148Sm 1.56 0.8 [2]
16O+ 149Sm 2.94 0.7 [40]
16O+ 150Sm 4.44 0.6 [40]
16O+ 154Sm 8.22 0.5 [2]
16O+ 144Sm −3.91 3.5 [2]
16O+ 154Sm 8.22 0.5 [2]
28Si+ 58Ni −6.81 4.4 [58]
28Si+ 64Ni 8.56 0.5 [58]
36S+ 90Zr −1.25 2.6 [59]
36S+ 96Zr 7.85 0.7 [59]
40Ca+ 90Zr −6.14 5.1 [49]
40Ca+ 96Zr 10.00 0.5 [49]
32S+ 110Pd 4.13 0.6 [47]
36S+ 110Pd 1.49 1.3 [47]
40Ca+ 48Ca 10.64 0.9 [37]
48Ca+ 48Ca 3.09 1.7 [37]

according to the atomic mass of O and Zr obtained from periodic table and inequality
above. If there exist certain reaction system for which the experimental data of fusion exc
function can be reproduced well by the calculations withγ = 1, then this reaction system
preferably chosen as the reference system for the series of reactions with the sameZ1 andZ2.
For example, for the series of reactions of16O + Sm, the reaction16O + 147Sm is taken as th
reference system because the experimental data can be reproduced by the calculations wγ = 1
(see the following discussion). For this kind of reactions, there may exist possibility of mor
one such reaction systems for which the experimental data can be described by the calc
with γ = 1. This situation might be rare and from our investigation we have not encounte
this situation occurs we prefer to choosing the reference system according to the inequalit
above. Theγ values for some fusion reactions with neutron closed-shell nuclei or neutron
nuclei are calculated by expression (25) and the results are listed in Table 2. For fusion re
between nuclei with neutron closed-shell and near theβ-stability line, theγ values are large
than 1 (see Table 2), which means that the width of the barrier distributionD1(B) becomes
narrow and thus the fusion cross sections of these systems at sub-barrier energies are su
compared with the reference system. Fig. 11 shows the fusion excitation functions of these
reactions. One can see from the figure that the experimental data are nicely reproduced.
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Fig. 11. The fusion excitation functions for reactions33S,50Ti + 90Zr, 35Cl + 54Fe,16O, 19F+ 208Pb and17O+ 144Sm
with neutron-shell-closure nuclei near theβ-stability line. The squares denote the experimental data. The solid d
the calculation results with theγ values obtained by formula (25).

Fig. 12. The fusion excitation functions for16O + 144,147,148,149,150,154Sm. The squares denote the experimental d
The solid and dashed curves denote the calculation results withγ obtained by formula (25) and withγ = 1, respectively.

Further, we find that at energies near and above the fusion barrier, calculated fusio
sections are not sensitive to the value ofγ (see Figs. 10 and 12(a), (f)), which implies th
we can calculate the fusion cross sections at energies near and above the fusion ba
unmeasured fusion system by simply takingγ = 1 in our parametrization of weighing func
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Fig. 13. The fusion excitation functions for132Sn+ 64Ni. The squares denote the experimental data and the solid c
denote the calculated results withγ obtained by formula (25). The dot-dashed and doted curves denote the res
fusion coupled channel model [31], respectively.

tion. For sub-barrier fusion, more sophisticated investigation forγ value is required. For furthe
investigating the influence ofγ value, a series of fusion reactions with16O projectile on Sm
isotope targets from144Sm to154Sm are studied. Fig. 12 shows the fusion excitation funct
for 16O + 144–154Sm. In the calculations we find that the fusion cross sections for16O + 147Sm
can be reproduced well by the calculations withγ = 1 (see Fig. 12(b)), so this system is tak
as a reference system for studying other16O+ 144–154Sm. The�Q for 16O+ 144Sm is negative
as obtained from Table 2 and consequently the correspondingγ value calculated by expressio
(25) is larger than 1. Thus, this fusion process is unfavored and the fusion cross sections
barrier energies are suppressed compared with reference system16O+ 147Sm. With the increas
in numbers of neutrons, theQ-values of reaction under consideration increase gradually
the correspondingγ values decrease, which indicates that the sub-barrier fusion cross se
change from suppression to enhancement compared with the reference system. Our ca
results for O+ Sm reactions are in good agreement with the experimental data. For investi
the competition between suppression and enhancement effect of fusion cross sections,
reactions of16O + 144,154Sm, 28Si + 58,64Ni, 36S+ 90,96Zr, 40Ca+ 90,96Zr, 32,36S+ 110Pd and
40,48Ca+ 48Ca are studied. We find that those reactions withγ < 1 are all enhanced at su
barrier energies compared with non-neutron-rich systems, while those reactions withγ > 1 are
all suppressed at sub-barrier fusion compared with neutron non-closed-shell systems.

For radioactive beam fusion reactions132Sn+ 64Ni, the competition exists since132Sn is
both neutron-rich and neutron-shell-closure (N = 82, Z = 50). Theγ value for this reaction
is smaller than 1 (see Table 2) and the enhancement of the fusion cross sections at su
energies is expected. The fusion cross sections of this system are shown in Fig. 13. Squ
solid curve denote the experimental data [56] and our calculation results, respectively. The
of fusion coupled-channel model (the dotted curve denotes inelastic excitations and the
curve denotes both the inelastic excitations and neutron transfer are considered [56]) a
presented for comparison. From the comparison one can find that the agreement in sub
fusion cross sections calculated with our approach is better than the fusion coupled c
model [28] calculations. This seems to indicate that there are still some physical aspects
in present coupled channel calculations.
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4. Conclusion and discussion

In this work, the Skyrme energy density functional has been applied to study heavy-i
sion reactions. The properties of ground state nuclei are studied by using the restricted
variational method with the Skyrme energy density functional plus the semi-classical ext
Thomas–Fermi approach (up to second order inh̄). With the proton and neutron density dist
butions obtained in this way, the fusion barriers of a series of reaction systems are cal
by the same Skyrme energy density functional. We propose a parametrization for the we
function describing the empirical barrier distribution based on the fusion barrier calculate
Skyrme energy density functional. The weighing functions of the barrier are assumed to
superposition of two Gaussian functions. With the parametrization of the weighing functio
the empirical barrier distribution, fusion excitation functions for more than 50 systems are
lated. A large number of measured fusion excitation functions spanning the fusion barriers
reproduced well. The competition between suppression and enhancement effects on sub
fusion caused by neutron-shell-closure and excess neutron effects have been investigate

However, the proton-shell-closure effects, dynamical effects [29,60] as well as the effec
to large deformation of nuclei in the fusion reactions have not been taken into account in p
work, yet. All those effects are very important in fusion dynamics but they are beyond the
of this work. The study on these aspects is under way.
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