Available online at www.sciencedirect.com

SCIENCE CbDIHECT‘
C NUCLEAR I\
PHYSICS

Nuclear Physics A 768 (2006) 80-98

Applications of Skyrme energy-density functional to
fusion reactions spanning the fusion barriers

Min Liu 3, Ning Wang*, Zhuxia Li#>¢, Xizhen Wu?¢, Enguang Zhab¢

& China Ingtitute of Atomic Energy, Beijing 102413, PR China
b |nstitute of Theoretical Physics, Chinese Academic of Science, Beijing 100080, PR China
€ Nuclear Theory Center of National Laboratory of Heavy lon Accelerator, Lanzhou 730000, PR China
d Department of Physics, Tsinghua University, Beijing 100084, PR China

Received 18 April 2005; received in revised form 20 December 2005; accepted 20 January 2006
Available online 3 February 2006

Abstract

The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions.
The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and
neutron density distributions determined by using restricted density variational (RDV) method within the
same energy density functional together with semi-classical approach known as the extended semi-classical
Thomas—Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empir-
ical barrier distribution to take into account the multi-dimensional character of real barrier and then apply
it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of
measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition
between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and
excess neutron effects is studied.

0 2006 Elsevier B.V. All rights reserved.

1. Introduction

A large number of fusion excitation functions have been accumulated in recent decades
[1-3], which provides a possibility for a systematic study on fusion reactions. Newton et al. [4]
analyzed a total of 46 fusion excitation functions at energies above the average fusion barriers
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using the Woods—Saxon form for the nuclear potential in a barrier passing model of fusion. They
found that the empirical diffuseness parametersanging between 0.75 and 1.5 were consid-
erably larger than those obtained from elastic scattering data and the dedsicedied strong
increase with increasing the charge proddgZ,. Thus, it results in a certain difficulty for giv-

ing satisfied predictions of fusion cross sections for unmeasured reaction systems. The fusion
coupled channel model is successful for describing fusion excitation function of heavy-ion reac-
tion at energies near fusion barrier. However, with the increasing of the neutron excess and the
charges (the product; Z») of two nuclei, the fusion coupled channel model encounters a lot of
difficulties due to a very large number of degrees of freedom involved. In order to carry out a sys-
tematic study of fusion excitation functions, a simple and useful approach seems to be required.
A semi-empirical approach in which the quantum penetrability of Coulomb barrier is calculated
by using the concept of barrier distribution arising due to the multi-dimensional character of the
real nucleus—nucleus interaction [5-7] is very helpful in this aspect. Thus, a reasonable para-
metrization of the weighing function describing the barrier distribution based on the interaction
potential in the entrance channel seems to be very useful.

In [8] the interaction potential in the entrance channel for fusion reactions was calculated
based on the semi-classical expressions of the Skyrme energy density functional [9-11]. In the
calculation of the interaction potential, which is the difference between the energy of the total
system and the energies of individual projectile and target, the density distributions of the pro-
jectile and target are required. In [8] the density distributions of the projectile and target were
determined by Hartree—Fock—Bogoliubov calculations. According to the Hohenberg and Kohn
theorem [12], the energy of &-body system of interaction fermions is a unique functional of
local density. In the framework of the semi-classical extended Thomas—Fermi (ETF) approach
together with a Skyrme effective nuclear interaction such a functional can be derived systemati-
cally. The density functional theory is widely used in the study of the nuclear ground state which
provides us with a useful balance between accuracy and computation cost allowing large sys-
tems with a simple self-consistent manner. Thus, it is very suitable to perform the calculation of
the entrance-channel potential and the densities of reaction partners based on the same Skyrmie
energy density functional. Of course, the different density distributions obtained by different ap-
proaches will influence the entrance-channel potential. While a self-consistent treatment for both
density distribution and the entrance-channel potential seems to be more reasonable.

In this work, the Skyrme energy density functional is applied to make a systematic study of
fusion reactions. Firstly, we will use the semi-classical expressions of the Skyrme energy den-
sity functional to study the energies and the density distributions of a series of nuclei by the
restricted density variational (RDV) method [10,11,13,14]. Secondly, with the density distrib-
utions obtained, the entrance-channel potentials of a series of fusion reactions are calculated.
Then, based on the entrance-channel potential obtained, a parametrization of the empirical bar-
rier distribution is proposed to take into account the multi-dimensional character of real barrier
and then apply it to calculate the fusion excitation functions in terms of barrier penetration con-
cept. The paper is organized as follows: In Section 2, the properties of ground state of nuclei
and the entrance-channel potential are studied in the framework of the Skyrme energy density
functional. In Section 3, an approach to calculate fusion excitation functions is introduced and
a large number of calculated results are presented. Finally, the summary and discussion are giver
in Section 4.
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2. Thecalculations of fusion barrier

The energy density functional theory is widely used in many-body problems. In the frame-
work of the semi-classical extended Thomas—Fermi (ETF) approach together with a Skyrme
effective nuclear interaction, the energy density functional can be derived systematically. We
take the Skyrme—Hartree—Fock (Skyrme—HF) formalism of the energy density functional [9,10]
and based on it we calculate the proton and neutron densities of nuclei by means of restricted
density variational method [10,11,13,14]. With the neutron and proton densities determined in
this way we calculate the fusion barrier for fusion reaction based on the same energy density
functional.

2.1. Skyrme energy density functional

The total binding energy of a nucleus can be expressed as the integral of energy density
functional [9,11]

E=/’Hdr. ()

The energy density function&l includes the kinetic, nuclear interaction and Coulomb interac-
tion energy parts

hZ
H = o=[1p(1) + (] + Hsky() + Heoul(r). @)

For the kinetic energy part, the extended Thomas—Fermi (ETF) approach including all terms up
to second order in the spatial derivatives (ETF2), is applied as that was done in Ref. [8]. With the
effective-mass form factor [15]
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the kinetic energy densitiesfor protons ( = p) and neutronsi(= n) are given by
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wherep; denotes the proton or neutron density of the nucleusead, + p,, Wo denotes the
strength of the Skyrme spin—orbit interaction. The nuclear interaction part with Skyrme interac-
tion Hsky reads
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wherery, 11, 2, t3, X0, X1, X2, x3, anda are Skyrme-force parameters [8,11]. The last term in
the right hand of expression (5) is the semi-classical expansions (up to second otdl@f in
spin—orbit densities [9]. The Coulomb energy density can be written as the sum of the direct and
exchange contribution, the latter being taken into account in the Slater approximation,

302 / 3\ 1/3
FHoou(® = p”()/|pp(r) T(E) ()2, (6)

From the above expressions (1)—(6), one can see that the total energy of a nuclear system car
be expressed as a functional of protons and neutrons dengiti@s,[ 0, (r)] under the Skyrme
interaction associated with the ETF approximation.

pn

2.2. The neutron and proton densities of nuclei

By minimizing the total energy of the system given by expression (1), the neutron and proton
densities can be obtained, that is to solve the variational equation

)
5o f{H[pn<r), Pp(] = Anpn(r) = Appp(r)}dr =0, @)

with the Lagrange multipliers,, and , to ensure the conservation of neutron and proton num-
ber. This density variational problem has been solved in two different ways in the past: either
by resolving the Euler—Lagrange equation [13,14] resulting from Eq. (7) or by carrying out the
variational calculation in a restricted subspace of functions [10,11,13,14]. In this work we take
the neutron and proton density distributions of a nucleus as spherical symmetric Fermi functions

r — Ro; -1 .

pi(r) = POi[1+eXp< : l)} . i={n,p} (8)
1

For the three quantitiesy;, Ro; anda; in the equation, only two of them are independent because

of the conservation of particle numba§ = [ p;(r)dr, N; = {N, Z}. For examplepo, can be

expressed as a function &, anda,,,

4 3 2( 9p N
pop:Z{éﬂ'ROP[l‘i‘T( (R—Op> :|} (9)

with high accuracy [16] wheRg, > a,. Here,Rop, ap, Ros, a, are the radius and diffuseness
for proton and neutron density distributions, respectively.

By using optimization algorithm, one can obtain the minimal engfgyws well as the corre-
spondingRo,, ap, Ros, a, for the neutron and proton density distributions.

The Skyrme force SkM* [17] is adopted in the calculations since SKM* is very successful
for describing the bulk properties and surface properties of nuclei. It is a well known fact that
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ETF calculations with a reasonable effective interaction reproduce experimental binding ener-
gies with a very good accuracy, when Strutinski-type shell corrections and pairing corrections
are taken into account. And the obtained charge root-mean-square radii in this work for shell
closed nuclei are very close to the corresponding experimental data [18,19]. In addition we have
made a comparison between the results with RDV method and the Skyrme—HF method and find
that the surface diffuseness obtained by RDV method are little smaller than that by Skyrme—-HF
calculations. It is due to the neglect of the higher order term corrections in the extended Thomas—
Fermi (ETF) approach [10]. We have made a check that the surface diffuseness calculated with
RDV method increases if all terms up to fourth order in the spatial derivatives in ETF energy
density functional (ETF4) are taken into account.

2.3. Thecalculations of fusion barriers

The interaction potentidl;, (R) between reaction partners can be written as
Vb(R) = Ewot(R) — E1 — E2, (10)

whereR is the center-to-center distance between two nuclei FiggR) is the total energy of

the interacting nuclear systeri; and E, are the energies of individual nuclei (projectile and
target), respectively. The interaction potent#al R) is also called entrance-channel potential in
Ref. [8] or fusion barrier [20,21], in the following we take the term of fusion barrier. FRgR),

E1, E> are calculated with the same energy-density functional as that is used in the calculations
of nuclear densities,

Etot(R) =/H[p1p(r) + p2p(1 = R), p1a(r) + p2.(r — R)] dr,
Elsz[mp(r),pln(r)]dr, (11)

E> =/H[pz,,(r), p2a(D)]dr. (12)

Here, p1,, p2p, p1. @and pp, are the frozen proton and neutron densities of the projectile and
target, determined in the previous section.

For calculating the nuclear interaction energies and Coulomb energies, multi-dimensional in-
tegral [22] is performed. For a certain reaction system, the fusion barrier is calculated in a region
from R = 7 fm to 20 fm with step oA R = 0.25 fm. Fig. 1 shows the fusion barrier for the reac-
tion 28Si + 92Zr. The solid curve denotes the results based on the density distributions obtained
by RDV method with ETF2. The dotted curve denotes the proximity potential [23]. The results
with the density determined by restricted density variational calculations are very close to those
of proximity potential at the region where the densities of two nuclei do not overlap.

The fusion barriers for more than 80 fusion systemisZ4, > 150) are calculated based on
ETF2. Part of them are listed in Table 1. Table 1 lists the barrier hdightadiusRg (see Fig. 1)
and the curvaturéwg of the barrier for a series of reactions. Here the curvature of the barrier,
hwo, is obtained approximately through fitting the barrier at the region fRyn- 1.25 fm to
Ro + 1.25 fm by an inverted parabola. From the table, one can find that the curvature of the
fusion barrier increases and tikevalue for complete fusion reaction decreases with the increase
of productZ,Z».

For exploring the influence of ordéf terms [10,11], full fourth order ETF (ETF4) is applied
to calculate both the densities and the fusion barriers for reactiSist+ 28Si, 0Ca+ “8Ca,
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Table 1

The fusion barriers of a series of reactions with ETF2 approach

Reaction Ro (fm) Bp (MeV) Awg (MeV) Z1Z> Q-value (MeV) Reference
28gj 4 28g;j 875 2986 237 196 1091 [32]
12¢ 4 927; 9.75 3334 210 240 094 [1
160 + 70Ge Q25 3652 284 256 251 [33]
160 4 72Ge a5 3627 237 256 630 [33]
160 + 3Ge a5 3616 244 256 884 [33]
160 + 74Ge a5 3608 250 256 1061 [33]
160 + 76Ge a5 3580 263 256 1051 [33]
12¢ 4 1287¢ 1025 4098 250 312 —0.91 [34]
160 1 927y 9.75 4388 286 320 —3.94 [1
160 + M2y 100 5112 319 384 -9.91 [35]
27A1 +70Ge q75 57.37 326 416 -5.17 [38]
2TAl +72Ge a75 5705 339 416 —421 [38]
27Al + 3Ge 975 5687 346 416 —2.90 [38]
27l + 74Ge q75 5672 351 416 -321 [38]
27Al +75Ge 100 5631 301 416 —2.39 [38]
35CI + S4Fe a5 6189 367 442 —17.77 [36]
160 4 144Nd 105 6135 327 480 —2243 [39]
12¢ 4 204py 110 5980 319 492 —2840 [44]
160 4 144gm 105 6362 327 496 2855 2]
170 4 1445m 105 6326 341 496 —24.43 2]
160 4+ 147sm 105 6331 337 496 —24.65 [40]
160 4 1485m 105 6320 341 496 —2309 2]
160 4+ 1495m 105 6308 346 496 —2171 [40]
160 4+ 1505m 105 6296 349 496 —2021 [40]
160 4 154g5m 1075 6243 307 496 —16.43 2]
160 4 166g, 1075 67.83 345 544 —2513 [41]
28gj4 927y 10.0 7420 397 560 —2812 [1
160 4 186y 11.0 7226 352 592 —21.30 2]
8254 89y 10.25 8231 376 624 —36.58 [42]
3354 90z; 1025 8412 387 640 —39.76 [43]
3354 927¢ 1025 8374 397 640 —3551 [43]
160 + 208pp 1125 7846 354 656 —46.49 [3]
35Cl + 92zr 1025 8861 414 680 —39.37 [1
19k 4 197y 11.25 8521 369 711 —35.92 [44]
160 4 2321 115 8447 368 720 —36.53 [45,46]
8254 110pq 105 94.00 413 736 3537 [47]
865 4 110pq 105 9285 428 736 —3801 [47]
19F 4 208py 1125 8744 387 738 —50.07 [48]
40ca+ 90zr 1025 10374 431 800 —57.27 [49]
40cq 967¢ 105 10222 428 800 —4113 [49]
50T 4 90z¢ 105 11116 449 880 —64.73 [50]
825 4 154gm 110 12022 447 992 —60.69 [51]
28gj 4 178t 11.25 12065 441 1008 —64.77 [52]
29gj 4 178t 11.25 12031 442 1008 —65.70 [52]
30g;j 4 186y 115 12214 424 1036 —70.22 [44]
8lp 175y 11.25 12697 446 1065 —70.45 [52]
28g;j 4 198pt 115 12804 438 1092 —-7875 [53]
82g 4 18174 1125 13815 456 1168 —8058 [54]

(continued on next page)
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Table 1 ¢ontinued)

Reaction Ro (fm) Bg (MeV) hwg (MeV) Z1Z> Q-value (MeV) Reference
8254 182y 11.25 14002 452 1184 —84.93 [55]
13254 64 115 16275 461 1400 —11105 [56]
40ca+ 208pp 1175 18657 462 1640 —13669 [57]
48Ca+ 208pp 120 18317 443 1640 —15380 [57]

80 T

N : %Si+¥zr

60 -

V, (MeV)

50 -

ETF2
—e— Prox.

30 1 : 1 1
8 R 12 16 20

R (fm)

Fig. 1. The entrance-channel fusion barrier488i + 92zr.

160 4 208pp, and*8Ca+ 298pPb. The similar work had been done by Dobrowolski et al. in [21].
We find that when thé&* terms [10,11] are included in the determination of the neutron and
proton densities, the surface diffuseness of densities of nuclei increases and thus the height of
fusion barrier calculated is lower (about 1-2 MeV) than those with ETF2. The fusion barriers
for these reactions calculated with different approach are shown in Fig. 2. The dotted curves and
the solid curves denote the results with ETF2 and ETF4, respectively, and the crossed curves
and the dashed curves denote the results of proximity potential and those of the analytical form
proposed in [21], respectively. Our calculation results of barriers with ETF4 are very close to
the analytical form in [21]. We find that the barriers calculated with ETF2 are more close to the
proximity potential for light and medium-heavy systems (for exampleZ, < 680), while the
barrier calculated with ETF4 are more close to those of proximity potential for heavy systems. It
implies that including fourth order terms of ETF approach is important in improving the surface
diffuseness for heavy nuclei.

Fig. 3 shows the barrier height®, of the selected systems with ETF2 approach and the
relative deviations oBg from the proximity potential®prox [23] as function 0fZ1 Z,. The circles
and crosses in Fig. 3(a) denote the results of our calculations and those of proximity potential,
respectively. Our calculation results for the barriers are quite close to the proximity potential and
the relative deviations are less thab% (see Fig. 3(b)) generally. From the figure one can also
see that the barrier heights linearly increase with prodiyct;. The solid line in Fig. 3(a) is

a linear function fit of the calculation results, iBg = ezlze—flitZZ + Vo with Rt = 13.7 fm and
Vo =130 MeV.
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Fig. 2. The fusion barriers fo#8Si + 28si, 40Ca+ 48Ca, 160 + 208ph and*®Ca+ 298pb. The dotted curves and the
solid curves denote the results with ETF2 and ETF4 approach, respectively, and the crossed curves and the dashed curve:
denotes the results of proximity potential and those of the analytical form proposed in [21], respectively.
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Fig. 3. (a) The barrier heightBg for a series of reaction systems and (b) the relative deviations from the results of

proximity potential. The circles and crosses in (a) denote the calculation results with RDV and proximity potential,
respectively. The solid line is the linearly fitting to our calculations.

3. Fusion excitation functions
3.1. The parametrization of barrier distribution

According to Wong'’s formula [24], the fusion excitation function for penetrating a parabolic
barrier can be expressed as

hooRE 2
Ot (Eem. B = - 0In (1 + exp[h—m(Ec_m. - Bo)]), (13)
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where E. . denotes the center-of-mass enerBy, Rp andfiwg are the barrier height, radius
and curvature, respectively. This expression is based on the one-dimensional barrier penetration
model. The one-dimensional barrier penetration model with empirically determined potential
parameters is successful in describing the fusion excitation functions for light systems and heavy
systems at energies above the barrier with some exceptions, but fails in describing sub-barrier
fusion for heavy systems. It is found that for sub-barrier fusion of heavy systems, the measured
fusion cross sections are of up to several orders of magnitude higher than the predictions of the
model.

Taking into account the multi-dimensional character [7] of the realistic barrier we may intro-
duce the barrier distribution in order to calculate the total fusion cross sections. Then, the fusion
excitation function in terms of barrier penetration concept is given by

oo

ofus(Ecm.) = / D(B)Uftjg(Ec.m., B)dB, (14)
0

whereoffjls) (Ecm., B) is the fusion excitation function for the barriBrbased on one-dimensional
barrier penetrationD(B) is a weighing function to describe the barrier distribution. Here we
replace the barrier heiglg in Wong's formula Eq. (13) byB. The distribution functionD(B)
satisfies

o0

/ D(B)dB =1. (15)

0

D(B) is often taken to be continuous and symmetric distributions of rectangular or Gaussian
shapes [25—-27]. The Wong’s formula is a special case when a delta distribDtidn £ §(B —
Bo)) is taken.

In this work, we propose a parametrization of the weighing function based on the fusion bar-
rier obtained in the previous section. That is that we try to propose a macroscopic empirical
barrier distribution rather than explicitly taking into account the coupling of the fusion motion to
internal degrees of freedom as that is done in the fusion coupled channel model [28]. Concern-
ing the weighing functions, we first investigate the shape of barrier distributions extracted from
experiments. We find in most cases the barrier distributions are not symmetric. For example, in
Fig. 4 solid circles show the experimental fusion barrier distributioff6f+ 22Zr [30]. One can
see that the fusion barrier distribution of the reaction system is asymmetric, its left side is steeper
than the right side. It indicates that only one Gaussian distribution is not good enough to describe
the fusion barrier distribution. Motivated by the shape of the barrier distribution extracted from
experiments, we consider the weighing function to be a superposition of two Gaussian functions.
Two Gaussian distribution®1(B) and D2(B) are proposed as

_ 7 [ (B—Bl)z}
Di(B) =5 N AT (16)

and

D>(B) = (17)

(. ‘_(B—Bz)z]
2 mws N (@wn)?

with
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Fig. 4. The fusion barrier distribution 30 + 92zr. The distribution is evaluated with E¢m, = 1.8 MeV. The solid
dots and solid curve denote the experimental data and our calculation results, respectively.

1
w1 = Z(BO — B,), (18)
1
wp = E(BO — B.), (19)
B1 = B + w1, (20)
B> = B, + wo. (21)

The barrier heighByp, radiusRg and curvaturdiwg are obtained from Table 1. Th&. = f B is

the effective barrier height taking into account the coupling effects to other degrees of freedom,
such as dynamical deformation, nucleon transfer, etc. We take the reducingffact@®26. The

y in D1(B) is a factor which influence the width of the distribution (B). The larger thes value

is, the narrower the distribution is. For the fusion reactions between nuclei with non-closed-shell
but near thes-stability line, we takey = 1; for the reactions with neutron closed-shell nuclei

or neutron-rich nuclei the value of is calculated by a parameterized formula which will be
discussed in the following subsection. From the expression of (16) and (17) one can find that the
peaks and the widths d@b1(B) and D2(B) only depend on the height of the fusion barrkyrex-
ceptthey in D1(B). The peaks of two Gaussian distributions locate at different energies between
B, andBy. For light systems, the width of the distribution becomes very small and thus it is very
close to delta distribution, in consistent with the one-dimensional penetration modeDB@th

and D»(B) satisfy Eq. (15). Further we introdu@®yy(B) = (D1(B) + D2(B))/2. Day(B) also
satisfies Eq. (15). In Fig. 5 we show the parameterized weighing functiéfCof- 186W. The
dashed and dot-dashed curves denote Gaussian distribldig®y and D»(B), respectively.

The solid curve denotes th@,,(B). There are two crossing points betweBn(B) and D2(B)

(or Dayr(B)) at both sides oDg,((B). The left one is located &, (see Fig. 5). We notice that

the left side of D4y (B) is too flat and does not fit the shape of the barrier distribution extracted
from experimental data well (for example, see the shape shown in Fig. 4). So we propose an
effective weighing function

Di(B): B < By,

22
Day(B): B > By (22)

Deff(B) = {
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56 64 Bx ‘ 7é ‘ 80
B (MeV)

Fig. 5. The weighing function for the fusion reaction 40 + 185w, The dashed and dot-dashed curves de-
note Gaussian distribution®1(B) and Dy(B), respectively. The solid curve denotes the average value, i.e.
Dayr(B) = [D1(B) + D2(B)]/2. The vertical dotted lines denote the position®gfand B., respectively. The arrow,
denotes the cross point between the cumbgéB) and Do (B) at the left side of the peak dayr(B).

(with [ Deff(B) d B ~ 1). We notice that the distributioP,(B) plays a main role for sub-barrier
fusion andDgyr(B) contributes more to the fusion at energies near and above the barrier.
With the Dess(B) we can, in principle, calculate the fusion cross sections by the expression
o0

ofus(Ecm.) = / Deff(B)Gf(uls)(Ec.m.v B)dB. (23)
0
However, theDet(B) does not satisfy Eqg. (15) exactly because there is a small difference be-
tweenD1(B) andDay(B) in the left side of theB, (see Fig. 5). To remedy this defect, we replace
the expression (23) by the following expression in the calculation of fusion cross sections

ofus(Ecm.) = min[Ul(Ec.m.), Uavr(Ec.m.)]- (24)

Here theo1(Ecm.) andoay(Ecm,) are calculated by expression (14) with B) = D1(B) and

D(B) = Day(B), respectively. Now the normalization condition Eq. (15) is always satisfied for
the weighing function adopted in the calculations of fusion cross sections atfRagh We

have checked that the fusion cross sections calculated with the expression (24) are very close
to those calculated with the expression (23) whenjthis not too large. In fact, we find that

the results calculated with Eq. (24) is in better agreement with experimental data. To check the
barrier distribution obtained with our model, we also show the barrier distribution obtained from
the calculation in Fig. 4 by the solid curve. The good agreement between experimental data and
calculation results indicates the parametrization of the weighing function is quite reasonable.

3.2. Fusion reactions between nuclel with non-closed-shell but near g-stability line

In this subsection, the fusion excitation functions for about 30 reaction systems are investi-
gated. For these reaction systems, the projectile and target nuclei are non-closed-shell but near
the B-stability line (the shell-closure effects 8O are neglected in this work). The shell effect
and excess neutron effect are weak for this kind reaction systems. Fig. 6 shows the fusion ex-
citation functions off0 + 188w and?8Si + 92zr. From the figure one can find that at energies
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Fig. 7. The fusion excitation functions fd’C, 160, 335, 35C| + 927y and 160 + 112cd, 144Nd, 166gr, 232Th,
The squares denote the experimental data and the solid curves denote the calculation resulsvith

above the barries,, (dot-dashed curves) is more close to the experimental data, while at ener-
gies below the barriery; (dashed curves) is preferable. From Fig. 6(c) and (f) one can see that
all experimental data spanning the fusion barrier for &t + 186w and?8Si + 927r can be
reproduced well. Fig. 7 to Fig. 9 show more calculation results and experimental data for com-
parison for this kind fusion reactions. All the fusion excitation functions can be reproduced very
well, which indicates our parametrization bfi(B) and D2(B) is quite useful and reasonable.
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3.3. Fusion reactions between nucle with neutron-shell-closure or neutron-rich nuclei
The shell effect for neutron closed-shell nuclei and the excess neutron effect for neutron-

rich nuclei play an important role in the fusion reactions at energies below the fusion barrier.
Fig. 10(a) shows the fusion excitation function ¥6 + °°Zr. The dashed curve denotes the
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Fig. 10. The fusion excitation functions for reactiot’s + 99zr, 32s 4 154sm. The squares denote the experimental
data. The solid and dashed curves denote the calculation results withvdlees obtained by formula (25) and with
y =1, respectively.

calculation results withy = 1 and the squares denote the experimental data. One can find that
at the energies near and above the barBgrthe calculation results withy = 1 are in good
agreement with the experimental data. However, at sub-barrier energies the fusion cross sections
are over-predicted witlr = 1. Through adjusting the value, we find that the fusion excitation
function at sub-barrier energies 1S+ °°Zr can be reproduced reasonably well whes: 3.6.

Fig. 10(b) shows the fusion excitation function of the neutron-rich nuclear fusion redé8en

1545m. For this reaction, the fusion cross sections at sub-barrier energies are under-predicted
wheny = 1. For this case, a smallshould be taken so that the distributiba(B) is broaden and

thus the fusion cross sections are enhanced at sub-barrier energies. We find thata®érthe
sub-barrier fusion cross sections can be reproduced well (see Fig. 10(b)). Through systematically
analyzing the fusion excitation functions of reactions between nuclei with neutron closed-shell
but near thes-stability line and those with neutron-rich nuclei, we find that fusion cross sections
are suppressed for the former cases and enhanced for the latter cases compared to the calculatio
results withy = 1. The enhancement of fusion cross sections for reactions with neutron-rich
nuclei compared with non-neutron-rich nuclei has been found in Refs. [7,29,30]. It is attributed
to the neutron transfer and neck formation which lower the fusion barrier and thus enhance the
fusion cross sections at sub-barrier energies [7,29]. For neutron closed-shell nuclei, the strong
shell effect suppresses the lowering barrier effect. Based on above discussion we propose an
empirical formula for they values used in the weighing functidm (B) for systems with the
sameZ1 andZ»,

y =1—coAQ +05(3F9+ 829, (25)

whereAQ = Q — Qo denotes the difference between tevalue of the system under consid-
ering for complete fusion and that of the reference system.dhes the Q-value of reference
systemco = 0.5 MeV~1 for AQ < 0 cases andy = 0.1 MeV~2 for AQ > 0 casess) ™9 — 1
for neutron closed-shell projectile (target) nucleus a8 = 0 for non-closed cases (the
shell-closure effects dffO are neglected in this work as mentioned in the above subsection). In
addition, we introduce a truncation fervalue, i.e.y should not be smaller than 0.5.

The reference system is chosen to be the reaction system with nuclei alghgtduaility line.
More precisely, we do it as follows: from the periodic table we find the relative atomic masses

of corresponding elements of projectile and targef ), M23), then the mass numbers for

reaction partners of reference systend® and A9 can be obtained by inequalityi, — 1 <
M, < Ap. i denotes projectilei (= proj) or target { = targ) nuclei. For example, for three
fusion reaction$60 + 909296y 160 4 927¢ reaction system is taken to be the reference system
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Table 2

The A Q andy values for a series reactions with neutron closed-shell nuclei or neutron-rich nuclei
Reaction AQ (MeV) y Reference
3354 90z¢ —4.25 36 [43]
507i 4 90z¢ -3.25 36 [50]
35C| + SFe —6.58 48 [36]
160 .+ 208pp 0 15 3]
19F 4 208pp 0 15 [44]
170 4 144gm —0.21 16 2]
3254 154gm 280 05 [51]
8254 110pq 413 06 [47]
40ca4 96z7r 10.00 05 [49]
132504 64N 7.50 07 [56]
160 4 144gm —3901 35 2]
160 + 147gm 0 10 [40]
160 1 1485m 156 08 2]
160 4 1495 204 07 [40]
160 + 150sm 444 06 [40]
160 4 154gm 822 05 [2]
160 4 144gm -3901 35 2]
160 4 1595m 822 05 2]
285 4 58Nii —6.81 44 [58]
28gj 4 B4Nj 8.56 05 [58]
3654 907y -1.25 26 [59]
8654 9%6z¢ 7.85 a7 [59]
40ca+ 99zr —6.14 51 [49]
40ca+ 96zr 10.00 05 [49]
8254 110pq 413 06 [47]
3654 110pq 149 13 [47]
40ca+ 48Ca 1064 09 137]
48Ca+48Ca 309 17 [37]

according to the atomic mass of O and Zr obtained from periodic table and inequality given
above. If there exist certain reaction system for which the experimental data of fusion excitation
function can be reproduced well by the calculations with= 1, then this reaction system is
preferably chosen as the reference system for the series of reactions with th&samgZ,.

For example, for the series of reactions'®® + Sm, the reactio®O + 14’Sm is taken as the
reference system because the experimental data can be reproduced by the calculatjprsiwvith

(see the following discussion). For this kind of reactions, there may exist possibility of more than
one such reaction systems for which the experimental data can be described by the calculations
with y = 1. This situation might be rare and from our investigation we have not encountered. If
this situation occurs we prefer to choosing the reference system according to the inequality given
above. They values for some fusion reactions with neutron closed-shell nuclei or neutron-rich
nuclei are calculated by expression (25) and the results are listed in Table 2. For fusion reactions
between nuclei with neutron closed-shell and neargkstability line, they values are larger

than 1 (see Table 2), which means that the width of the barrier distriblid®) becomes
narrow and thus the fusion cross sections of these systems at sub-barrier energies are suppressec
compared with the reference system. Fig. 11 shows the fusion excitation functions of these fusion
reactions. One can see from the figure that the experimental data are nicely reproduced.
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Further, we find that at energies near and above the fusion barrier, calculated fusion cross
sections are not sensitive to the valuejof(see Figs. 10 and 12(a), (f)), which implies that
we can calculate the fusion cross sections at energies near and above the fusion barrier for
unmeasured fusion system by simply takipg= 1 in our parametrization of weighing func-
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Fig. 13. The fusion excitation functions f&#2Sn+ 84Ni. The squares denote the experimental data and the solid curves
denote the calculated results withobtained by formula (25). The dot-dashed and doted curves denote the results of
fusion coupled channel model [31], respectively.

tion. For sub-barrier fusion, more sophisticated investigatioryfealue is required. For further
investigating the influence of value, a series of fusion reactions witfO projectile on Sm
isotope targets from**Sm to1%4Sm are studied. Fig. 12 shows the fusion excitation functions
for 160 4 144-15%5m_|n the calculations we find that the fusion cross section$®@r+ 147Sm
can be reproduced well by the calculations with= 1 (see Fig. 12(b)), so this system is taken
as a reference system for studying ot + 144-155m. TheA Q for 160 + 144Sm is negative
as obtained from Table 2 and consequently the correspondirgdue calculated by expression
(25) is larger than 1. Thus, this fusion process is unfavored and the fusion cross sections at sub-
barrier energies are suppressed compared with reference s\{f@ert4’Sm. With the increase
in numbers of neutrons, th@-values of reaction under consideration increase gradually and
the corresponding values decrease, which indicates that the sub-barrier fusion cross sections
change from suppression to enhancement compared with the reference system. Our calculated
results for O+ Sm reactions are in good agreement with the experimental data. For investigating
the competition between suppression and enhancement effect of fusion cross sections, six pair
reactions oft60 4 144.15%5m 28g;j 4 58,64\, 365 4 90967y 40Cq 4 90967y 32,365 4 110pg gnd
40.48Ca + 48Ca are studied. We find that those reactions witk 1 are all enhanced at sub-
barrier energies compared with non-neutron-rich systems, while those reactions withare
all suppressed at sub-barrier fusion compared with neutron non-closed-shell systems.

For radioactive beam fusion reactioh¥Sn -+ 64Ni, the competition exists sincE?Sn is
both neutron-rich and neutron-shell-closuré £ 82, Z = 50). They value for this reaction
is smaller than 1 (see Table 2) and the enhancement of the fusion cross sections at sub-barrier
energies is expected. The fusion cross sections of this system are shown in Fig. 13. Squares and
solid curve denote the experimental data [56] and our calculation results, respectively. The results
of fusion coupled-channel model (the dotted curve denotes inelastic excitations and the dashed
curve denotes both the inelastic excitations and neutron transfer are considered [56]) are also
presented for comparison. From the comparison one can find that the agreement in sub-barrier
fusion cross sections calculated with our approach is better than the fusion coupled channel
model [28] calculations. This seems to indicate that there are still some physical aspects missing
in present coupled channel calculations.
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4. Conclusion and discussion

In this work, the Skyrme energy density functional has been applied to study heavy-ion fu-
sion reactions. The properties of ground state nuclei are studied by using the restricted density
variational method with the Skyrme energy density functional plus the semi-classical extended
Thomas—Fermi approach (up to second order)irWith the proton and neutron density distri-
butions obtained in this way, the fusion barriers of a series of reaction systems are calculated
by the same Skyrme energy density functional. We propose a parametrization for the weighing
function describing the empirical barrier distribution based on the fusion barrier calculated with
Skyrme energy density functional. The weighing functions of the barrier are assumed to be the
superposition of two Gaussian functions. With the parametrization of the weighing function for
the empirical barrier distribution, fusion excitation functions for more than 50 systems are calcu-
lated. A large number of measured fusion excitation functions spanning the fusion barriers can be
reproduced well. The competition between suppression and enhancement effects on sub-barrier
fusion caused by neutron-shell-closure and excess neutron effects have been investigated.

However, the proton-shell-closure effects, dynamical effects [29,60] as well as the effects due
to large deformation of nuclei in the fusion reactions have not been taken into account in present
work, yet. All those effects are very important in fusion dynamics but they are beyond the scope
of this work. The study on these aspects is under way.
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