
DOI: 10.1142/S0217732310032585

May 10, 2010 9:39 WSPC/146-MPLA S0217732310032585

Modern Physics Letters A
Vol. 25, No. 15 (2010) 1275–1280
c© World Scientific Publishing Company

COULOMB ENERGY OF SPHERICAL NUCLEUS

XUEXIN YU∗, MIN LIU∗,† and NING WANG∗,‡

∗Department of Physics, Guangxi Normal University, Guilin 541004, P. R. China
†College of Nuclear Science and Technology, Beijing Normal University,

Beijing 100875, P. R. China
‡wangning@gxnu.edu.cn

Received 10 November 2009
Revised 30 November 2009

The analytical formula for calculating the Coulomb energy of spherical nucleus with
Woods–Saxon charge distribution is refined by taking into account the higher-order
terms of surface diffuseness. The obtained relative deviations are smaller than 0.05%
from the results with numerical integration for almost all calculated nuclei.
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The calculation of the Coulomb energy for nuclei or atoms with small computing

effort and high accuracy is a great challenge in physics and quantum chemistry

research.1–7 For a complicated nuclear system, there exist serious difficulties in

attempts to calculate the Coulomb energy.2 As it is known, the Coulomb energy of

a system with charge density distribution ρ(r) is written as

EC =
e2

2

∫∫

ρ(r)ρ(r′)

|r− r′| dr dr′ . (1)

For a spherical nucleus with uniform charge distribution, the corresponding

Coulomb energy is written as

E
(0)
C =

3

5

Z2e2

R
, (2)

with the radius R of the nucleus and the charge number Z. For a system with

Gaussian charge distribution ρ(r) = ρ0 exp(− r2

2σ2 ), the Coulomb energy is expressed

as8

EG
C =

(2πσ2)5/2√
2

ρ20e
2 =

Z2e2

2
√
πσ

, (3)

where ρ0 = Z
(2πσ2)3/2

is the central density, and σ is the width (standard deviation)

of the Gaussian distribution. For a system with an arbitrary charge distribution,
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the Coulomb energy can be obtained numerically through Eq. (1). However, the six-

dimensional integrals of Eq. (1) is very time-consuming. In the practical calculation,

one needs to find an efficient approach to calculate the Coulomb energy at a high

level of accuracy. Simple equations for calculating the Coulomb energies of various

density distributions of nuclear system would therefore be useful. In the liquid-

drop model, the Coulomb energy is roughly calculated under a uniform charge

distribution approximation. But for light nuclei, the surface thickness is about 2 fm

which is comparable to the corresponding nuclear radius. The contribution of the

nuclear surface diffuseness to the Coulomb energy thus should not be neglected.

In this work, we attempt to propose an analytic expression for calculating the

Coulomb energy of spherical nucleus with the nuclear surface diffuseness being

taken into account. We first calculate the Coulomb potential of a spherical nucleus

with Woods–Saxon charge distribution

ρ(r) =
ρ0

1 + e
r−R0

a

(4)

by solving the Poisson equation. Where, ρ0, R0 and a are the central charge density,

the half-density radius and the surface diffuseness, respectively. Then, we calculate

the corresponding Coulomb energy with a numerical integration to the Coulomb

potential. Finally, based on the calculated results, we propose an analytic expression

for the Coulomb energy, with which the Coulomb energy of a spherical nucleus can

be directly calculated with high accuracy.

The Coulomb energy of a nuclear system is calculated by

EC =
e

2

∫

ρ(r)VC(r)dr , (5)

where VC(r) is the Coulomb potential obtained by solving the Poisson equation

∇2VC(r) = −4πeρ(r) . (6)

The Poisson equation is solved by a code hwscyl (a Fortran subroutine in FISH-

PACK9) which is an adaptive fast solver for solving a five-point finite difference

approximation to the modified Helmholtz equation in cylindrical coordinates using

a centered finite difference grid. We calculate the Coulomb potential in cylindrical

coordinates within a region x = 0–40 fm and z = −40–40 fm (using a grid with step

size 0.1 fm). It is known that when r ≫ R, the asymptotic behavior of the Coulomb

potential of a nucleus is VC = eZ/r, which gives the boundary condition in solving

the Poisson equation. The Coulomb energy of an arbitrary axially deformed nu-

clear system can be obtained with a two-dimensional integral (see Eq. (5)) to the

Coulomb potential VC(r) which can be calculated with the very fast solver for the

Poisson equation mentioned above.

We first check the results of the numerical integration of Eq. (5). In Table 1, we

list the Coulomb energies of some systems with Gaussian charge distribution. The

width σ of the Gaussian distribution and the charge number Z of the systems in

Table 1 are set arbitrarily. EG
C denotes the exact Coulomb energy of the systems
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Table 1. Coulomb energy of system with Gaussian charge distribution.

Z 8 20 40 50 82
σ (fm) 1.5 2.5 3.0 5.5 7.1

EG
C (MeV) 17.3319 64.9946 216.6488 184.6439 384.7042

EC (MeV) 17.3345 64.9979 216.6573 184.6457 384.7066

|EC − EG
C
|

EG
C

(×10−4) 1.50 0.51 0.39 0.10 0.06

0.0 0.4 0.8 1.2

32

40

48

0.0 0.4 0.8 1.2
100

120

140

160

0.0 0.4 0.8 1.2
280

320

360

400

0.0 0.4 0.8 1.2

720

800

880

 

E(0)
C =47.75MeV

a (fm) 

28Si

(a)

 

 

 

E(0)
C =150.29MeV

a (fm) 

(b)

58Ni

 

 

E
C
 (M

eV
)

E(0)
C =379.29MeV

E
C
 (M

eV
)

E
C
 (M

eV
)

120Sn

 
E

C
 (M

eV
)

a (fm) 

(c)

 

 

E(0)
C =841.92MeV  

 

a (fm) 

(d)

208Pb

 

 

Fig. 1. The Coulomb energies of nuclei 28Si, 58Ni, 120Sn, 208Pb as functions of nuclear surface

diffuseness a. The arrows denote the corresponding values of E
(0)
C

from Eq. (2). The open circles
denote the results with numerical integration approach.

obtained with Eq. (3), and EC denotes our results with numerical integration of

Eq. (5). It shows that the obtained Coulomb energy EC with our approach are very

close to the exact value EG
C , and the relative deviations |EC − EG

C |/EG
C are about

10−4–10−5.

With the same numerical approach, we calculate the Coulomb energy of some

nuclei with Woods–Saxon charge distribution. The central charge density of a nu-

cleus is obtained with the Skyrme energy density functional together with the ex-

tended Thomas–Fermi (ETF) approach.10 The nuclear surface diffuseness a varies

from 0.1 to 1.2 fm in which the central charge density remains unchanged through

the conservation of charge number and varying the half-density radius R0. Figure 1

shows the calculated Coulomb energies of nuclei 28Si, 58Ni, 120Sn, 208Pb as a func-

tion of nuclear surface diffuseness a. The arrows denote the corresponding Coulomb

energy of uniform charge distribution E
(0)
C . With the decrease of a, the Coulomb



May 10, 2010 9:39 WSPC/146-MPLA S0217732310032585

1278 X.-X. Yu, M. Liu & N. Wang

0.0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1.0

1.2
 

 

E
C

ou
l / 

E
(0

)
C

a/R

 EC / E(0)
C  

 Eq.(9)
 Eq.(10)

Fig. 2. The ratio of Coulomb energy to E
(0)
C

for a number of nuclei with A = 16–300. The vertical
dashes denote the results with numerical integration approach. The dashed and the solid curve
denote the results of Eqs. (9) and (10), respectively.

energies approach to E
(0)
C . Table 1 and Fig. 1 indicate that our calculations are in

good agreement with the exact values of the Coulomb energies for the two special

cases mentioned above. From Fig. 1, one can see that the Coulomb energy of a

nucleus gradually decreases with the surface diffuseness a, and could be written as

ECoul = E
(0)
C F . (7)

To obtain the expression of F as a function of the surface diffuseness a, we study

the Coulomb energies of a number of nuclei from A = 16 to 300 systematically. The

calculated results through the numerical integration approach as a function of a/R

are shown in Fig. 2 (the vertical dashes). It is known that the general expression in

terms of a leptodermous expansion for the Coulomb energy of a uniform distribution

with a diffuse surface is,8

ECoul = E
(0)
C

(

1− 5

2
β2 + · · ·

)

. (8)

Where β = b/R (notation in Refs. 6 and 8) with b = π√
3
a denotes the Süssmann’s

width8,11 and R =
[

Z/(4π3 ρ0)
]1/3

is the corresponding radius of a spherical nucleus

with uniform charge distribution. For a Woods–Saxon charge distribution, an ex-

pression for F (β) is previously proposed in Refs. 6 and 8 based on the leptodermous

expansion,

F (β) = 1− 5

2
β2 + 3.0216β3 + β4 + · · · , (9)
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Fig. 3. Relative deviations |ECoul − EC |/EC of the Coulomb energies from the numerical in-
tegration results. ECoul denotes the calculated Coulomb energy with Eq. (10). The shades with
light gray denote that the relative deviations are smaller than 0.05%.

in which the coefficients are directly obtained from the leptodermous expansion for a

Woods–Saxon distribution so long as exp(−R/a) is negligible. The results of Eq. (9)

are shown in Fig. 2 (the dashed curve). One can see that for nuclei with a/R < 0.15

the Eq. (9) gives nice results, which indicates that Eq. (9) is applicable for heavy

nuclei at their ground state. With the increase of a/R, Eq. (9) deviates from the

calculated results gradually, which is due to that the Coulomb energy of a nucleus

is not converging very rapidly as a function of a/R, the higher-order terms should

also be considered. For a better description of Coulomb energies of light nuclei

(the corresponding value of a/R is about 0.2) or some exotic nuclear systems, the

expression for F is refined by taking into account the influence of the higher-order

terms of a/R. Because it is complicated to directly obtain the coefficients of all

higher-order terms based on the leptodermous expansion, we attempt to obtain the

coefficients by fitting the calculated Coulomb energies with numerical integration.

Based on Eq. (9) and including the terms β5 and β6, we get a refined expression

for the ratio ECoul/E
(0)
C by fitting the calculated Coulomb energies in Fig. 2 and

the second and fourth terms remain fixed,

ECoul

E
(0)
C

= 1− 5

2
β2 + c3β

3 + β4 + c5β
5 + c6β

6 + · · · (10)

with c3 = 3.005, c5 = −4.822, c6 = 2.934 and β = π√
3

a
R . The results of Eq. (10)

is also shown in Fig. 2 (the solid curve). One can see that Eq. (10) gives better

results for nuclei with large a/R when the terms β5 and β6 are involved. Here, the

contribution of other higher-order terms is approximately absorbed in the coeffi-

cients of Eq. (10). In Fig. 3, we show the relative deviations |ECoul−EC |/EC of the

Coulomb energies from the numerical results with Eq. (5). ECoul denotes the cal-

culated Coulomb energy with Eq. (10). From Fig. 3, one can see that the Coulomb

energy obtained with the refined formula Eq. (10) is close to the calculated result

with numerical integration. The relative deviations of the Coulomb energies with
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Eq. (10) are smaller than 0.05% (denoted in light gray) for almost all calculated

nuclei with the diffuseness a ≤ 1.2 fm.

In summary, the analytical formula for calculating the Coulomb energy of spher-

ical nucleus with Woods–Saxon charge distribution has been refined by taking into

account the higher-order terms of the surface diffuseness. We first calculate the cor-

responding Coulomb potential by numerically solving the Poisson equation. Then

with an integral to the Coulomb potential, we obtain the Coulomb energy. We have

checked the Coulomb energies of systems with Gaussian charge distributions. Our

results are in good agreement with the exact values of the Coulomb energies. By

fitting the calculated Coulomb energies with the numerical integration for a number

of nuclei from A = 16 to 300 with Woods–Saxon charge distribution, the analyti-

cal formula is finally obtained. The relative deviation of the Coulomb energy with

the proposed formula is smaller than 0.05% for almost all calculated nuclei with

surface diffuseness a ≤ 1.2 fm which is useful for study of nuclear structure. With

the same approach, the Coulomb energy of an arbitrary axially deformed system

can be reliably calculated with small computing effort. The study of the Coulomb

energy for nuclear system with large deformation is in progress.
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