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Abstract
A possible method is proposed for extracting fusion barriers from measured
fusion excitation functions. The obtained fusion barrier distributions are in
good agreement with those determined by the d2(Eσfus)/dE2 method. The
characteristics of the fusion barrier distributions, such as the mean barrier
heights, the full widths at half maximum as well as the radii of the barriers, are
studied systematically. A systematic comparison between the characteristics
of the fusion barrier distributions determined by the proposed method and
those of empirical barrier distributions based on the nucleus–nucleus potential
calculated with Skyrme energy-density functional together with extended
Thomas–Fermi approach has been performed for 120 fusion reactions. A
nice agreement between them is found. Simultaneously, the influence of the
static deformation and the deformation due to excitation of the reaction partners
on the reduction of the fusion barriers was investigated for a series of reactions.
From the investigation of the deviation of the calculated fusion excitation
functions based on different Skyrme interactions from the experimental data,
we find that the nucleus–nucleus potential obtained with SkM* can provide a
better description of the fusion cross sections at energies near and above the
barrier systematically.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of fusion barriers in heavy-ion fusion reactions has attracted a lot of attention
[1–12], since the fusion barriers have close relations with nucleus–nucleus interaction and
fusion mechanism, and furthermore, the study of fusion barriers is quite helpful for synthesis
of super-heavy nuclei and understanding of nuclear structure effects. It is of great importance
to propose and/or check theoretical nucleus–nucleus interaction and to explore the global
features of the fusion barriers through a systematic study of the fusion barriers based on a
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large number of measured experimental data of fusion reactions. As the fusion barriers could
not be measured directly in experiments, to extract and analyze the fusion barriers based on
the directly measured fusion excitation functions is essentially necessary for establishing a
reliable theoretical model for describing fusion reactions. Then, combining the theoretical
nucleus–nucleus interaction and the extracted fusion barriers, the fusion mechanism such as
a reduction of the fusion barriers due to the deformation of the reaction partners and the
influence of nuclear potentials on the fusion cross sections can be explored.

With the precisely measured fusion cross section, the fusion barrier and its characteristics
such as the height and the position of the barrier could be extracted. But it is well known that the
simple one-dimensional barrier penetration cannot describe the fusion cross sections of heavy
systems at sub-barrier energies satisfactorily. Therefore, a barrier distribution is introduced
to take into account the coupling between the relative motion of the two nuclei and other
degrees of freedom [2]. It was shown in [3–5] that the distribution of the fusion barrier heights
could be extracted directly from a fusion excitation function using the second derivative of the
product of cross section σfus multiplied by the energy E. The differentiation d2(Eσfus)/dE2 is
performed using the point-difference approximation [4, 5]. This method requires very high
precision and small well-determined energy steps of the measured cross sections. Thus, the
fusion barriers of a number of reactions measured before cannot be analyzed with the method
because of the relatively low precision and large energy steps. Furthermore, since the statistical
error of the fusion barrier distribution associated with the double differentiation of Eσfus is
proportional to E, it is difficult to precisely determine the over-barrier part of the distribution
with this method.

In addition to the double differentiation method, there still exist some other methods for
obtaining the information about the fusion barriers based on the measured fusion excitation
functions by combining theoretical formulae of the fusion cross section. In [8], a large number
of measured fusion excitation functions, at energies above the average fusion barriers, have
been fitted by using the Woods-Saxon form of the nuclear potential in a barrier passing model
of fusion. The data above the barrier region were fitted by using the modified Wong formula
in which the dependence of the fusion radius on the incident energy is taken into account
together with the Woods-Saxon potential with three parameters to be determined. In [12], a
simple formula for the cross section for overcoming the potential barrier based on the classical
expression σfus(E) = πR2

fus(1−B/E) was proposed, assuming a single Gaussian distribution
of the barrier heights. The parameters of the Gaussian distribution were obtained by fitting
the measured fusion excitation function. The advantage of this method is that it does not
require a very high precision of the measured fusion excitation function compared with the
d2(Eσfus)/dE2 method and thus a lot of experimental data obtained before with a little lower
precision can also be analyzed for obtaining helpful information about the fusion barriers.
Nevertheless, the shape of a single Gaussian distribution of barrier is not consistent with the
barrier distribution determined by the d2(Eσfus)/dE2 method as it has been found that the
fusion barrier distributions by this method are not symmetric for most fusion reactions. It
means that multi-Gaussian functions for describing the fusion barrier distribution are needed.

In the first part of this work, we will propose a method to obtain the information about the
fusion barriers from the measured fusion excitation functions by combining Wong’s formula
[1] for the fusion cross section with the fusion barrier distribution which is a superposition
of a set of Gaussian functions with fitting parameters. The obtained results will be compared
with those of the methods mentioned above.

It is known that the fusion barrier distributions are well explained with the fusion-
coupled channel model [7] with a certain nucleus–nucleus potential. However there still
exist some difficulties to find a potential by which the available experimental data of the
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fusion reactions from light to heavy systems can be well reproduced systematically and thus
the fusion cross sections of unmeasured reactions can be predicted reliably. For describing
the fusion reactions systematically, we proposed a parametrization of the empirical barrier
distribution in [14] based on the fusion barrier calculated with the Skyrme energy density
functional. By combining the empirical distribution for fusion barrier heights with the Wong
formula, the fusion cross sections for reaction systems can be calculated. In this work we
will make a systematic comparison of the parametrization of the empirical fusion barrier
distribution given in [14] with the fusion barrier determined from the measured experimental
data. In addition, for understanding the physics behind the extracted and the empirical fusion
barrier distributions, the influence of the nuclear deformation on the reduction of the fusion
barriers will be investigated with the same energy-density functional for a series of fusion
reactions induced by 16O.

The paper is organized as follows: in section 2, the detailed procedure for extracting
the fusion barriers is introduced and some results are presented simultaneously. In section 3,
theoretical analysis on the fusion barriers is discussed. Finally, the summary and discussion
are given in section 4.

2. Fitting procedure and obtained fusion barriers

Taking into account the multi-dimensional character [15] of the realistic barrier, the fusion
excitation function is given by

σfus(Ec.m.) =
∫ ∞

0
D(B)σ

(1)
fus (Ec.m., B) dB, (1)

based on the barrier penetrating model. Here we take σ
(1)
fus (Ec.m., B) to be Wong’s formula [1]

for the fusion cross section, which reads

σ
(1)
fus (Ec.m., B) = h̄ωR2

fus

2Ec.m.

ln

(
1 + exp

[
2π

h̄ω
(Ec.m. − B)

])
, (2)

where Ec.m. denotes the center-of-mass energy, and B,Rfus and h̄ω are the height, the radius
and the curvature of the barrier, respectively. D(B) is a weight function to describe the
distribution of the barrier heights and satisfies the normalization condition∫ ∞

0
D(B) dB = 1. (3)

Here, we assume that D(B) consists of a set of Gaussian functions Gi(B),

D(B) =
N∑

i=1

wiGi(B), (4)

with

Gi(B) = 1√
2πLi

exp

[
− (B − Bi)

2

2L2
i

]
. (5)

Where, wi, Bi and Li are the weight, centroid and width of the ith Gaussian function,
respectively. N is the number of Gaussian functions involved. By using expressions
(1)–(5) the fusion excitation function can be calculated with the 3N + 1 parameters in total,
including the fusion radius Rfus and the curvature h̄ω in equation (2) to be determined. By
varying these parameters in a reasonable range, one can minimize the average deviation of
fusion cross sections from the experimental data, defined as

χ2
log = 1

m

m∑
n=1

[log(σth(En)) − log(σexp(En))]
2 (6)
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with logarithmic scale for considering all of the measured fusion cross sections at energies
from sub-barrier to over-barrier fusion. Here, m denotes the number of energy points of
experimental data, σth(En) is calculated with equation (1) and σexp(En) is the experimental
fusion cross section at the center-of-mass energy En. Then the optimal parameters (wi, Bi, Li)

by which the distribution of barrier heights D(B) is determined are obtained at the minimum
of χ2

log.
In principle, with an increasing number of Gaussian functions N, the distribution of barrier

heights becomes more precise. However, the value of N is restricted by the computational
cost and the number m of available energy points of experimental data. Therefore, one should
make a compromise for a systematic study of the fusion barrier distributions. In this work, we
take N � 4, the influence of the value of N on the distribution is discussed in the following
part. In order to eliminate the influence of the fluctuation in experimental data caused by the
statistical error, we randomly choose a part of experimental data when extracting the fusion
barrier distribution at each time, by repeating such a procedure for many times we obtain the
average barrier distribution with the weight being taken into account for each time.

The details of the procedure are as follows: first, we check the behavior of the measured
fusion excitation function at over-barrier energies. As it is well known that the product Eσfus

at energies above the barrier increases linearly with energy according to the classical formula
for fusion cross sections [5, 12]. Therefore, at over-barrier energies we can eliminate the
data points which largely deviate from the linear dependence of Eσfus versus E in extracting
the barrier distribution from the measured fusion excitation function. Eliminating those data
points at over-barrier energies will not make large effect on the barrier distribution. Then,
at each time (we call each event, for convenience) for each data point we assign a random
number ξ which is in a range of 0–1. If the random number ξ for a data point is larger than or
equal to Paccept, the data point will be chosen to be one of the data points for determining the
barrier distribution in this event. Thus, only a part of the experimental data from the fusion
excitation function is applied for extracting the barrier distribution in an event, while the Paccept

will control the portion of the whole data points of the excitation function. Here Paccept = 0.2
is taken. By performing such a procedure for Ntot times (i.e. producing Ntot events), we can
obtain the average distribution of the fusion barrier heights Dfus(B), i.e.

Dfus(B) = 1

C

Ntot∑
k=1

gkDk(B). (7)

Where Dk(B) and gk are the obtained barrier distribution function and the relative weight of
the kth event, respectively. The latter is estimated by

gk = mk

m

χ2
log,max − χ2

log,k

χ2
log,max − χ2

log,min

, (8)

the mk and χ2
log,k are the number of selected experimental data points and the corresponding

deviation of the calculated fusion cross sections from the experimental data (see
equation (6)) in the kth event, respectively. The χ2

log,max and χ2
log,min are the maximum and

minimum deviation in the Ntot events, respectively. By using the relative weight gk , the weight
of each experimental data point is taken into account approximately. C in equation (7) is a
normalization constant, i.e. C = ∑Ntot

k=1 gk . In this work, we set Ntot = 50.
Figure 1 shows the fusion barrier distributions of 40Ca+96Zr [5] and 16O+208Pb [16]

determined by the present method (solid curve) and by the double differentiation method
(squares), i.e.

Dder(E) = 1

πR2
fus

d2(Eσfus)/dE2, (9)
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(a) (b)

Figure 1. (Colour online) Distribution of the barrier heights of (a) 40Ca+96Zr and (b) 16O+208Pb.
The solid curves and the squares denote the results of this approach Dfus(B) with N = 2 and
those by equation (9), respectively. The crosses denote the results of 50 events. The fusion barrier
distributions Dder are evaluated with the point-difference method in [4] by taking �E = 2.5 MeV
for all reactions in this work, if not otherwise stated.

respectively. The double differentiation is performed using the point difference method [4].
Here we take the number of Gaussian functions N = 2 in the calculations. It is seen from
figure 1 that the barrier distributions determined by both methods are in good agreement. In
order to show the fluctuation in the determined barrier distributions in a total of 50 events in
the figure we also show the results of the 50 individual events by crosses, from which one
can find the deviation of the barrier distribution in individual events from the average one.
Obviously, the deviation is very small at the left side of the distribution while it is relatively
large near the centroid and the right side of the distribution. It seems to be in accordance
with the fact that the statistical error of Dder is proportional to the barrier energy. Figure 2
shows the distributions of barrier heights for the fusion reactions 28Si+92Zr [17], 32,34S+89Y
[18], 36S+110Pd [19], 40Ca+124Sn [20], 48Ca+154Sm [21], 19F+208Pb [22] and 12C+237Np [23]
determined by the two methods. Similarly, from figure 2 one sees that the fusion barrier
distributions determined by both methods are in good agreement. In figure 2(c), we also show
the results of the exact coupled channels calculations [18] including single-phonon states in
34S and single-phonon (short dashed curve) and double-phonon states (dot-dashed curve) in
89Y for comparison. The small peak in Dfus at energy about 79 MeV is well described by the
coupled channels calculations with the excitations of the reaction partners being taken into
account. In figure 2(h) we notice that a clearer picture of the shape of the barrier distribution
is provided by using our method than the double differentiation method when the precision of
the measured fusion excitation function is little lower. From the fluctuation of the distributions
for the various events, the statistical errors of this approach are obtained and shown in shades
in the sub-figures. With the statistical errors of the distributions, the standard deviations
�B of the mean barrier heights and the deviations χ2

log of the cross sections which are also
presented in the sub-figures, one may get a feeling for the reliability of the method and the
precision of the obtained fusion barriers. To study the influence of the number of Gaussian
functions involved, in figure 3 we show the distributions of barrier heights for 16O+208Pb
determined by setting the number of Gaussian functions from N = 1 to N = 4, respectively.
The squares denote the Dder for comparison. The inserted figure in figure 3 presents the
deviations of the fusion excitation functions from the measured experimental data for the four
cases with N = 1–4, respectively. One finds that when N = 1, the deviation of the calculated
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Figure 2. (Colour online) Distribution of the barrier heights of reactions 28Si+92Zr, 32,34S+89Y,
36S+110Pd, 40Ca+124Sn, 48Ca+154Sm, 19F+208Pb and 12C+237Np. The solid curves and the squares
denote the results of this approach Dfus(B) with N = 2 and those obtained with equation (9) by
taking �E = 2.5 MeV, respectively. The open circles in (d) and (e) denote the results obtained
with equation (9) by taking �E = 4.0 MeV. The shades denote the statistical errors due to the
fluctuations of the Gaussian fits for 50 events, and the average deviations χ2

log of the cross sections
and the standard deviations �B (in MeV) of the mean barrier heights are also presented in the
sub-figures. The dot-dashed curve in (c) is a coupled channel calculation from [18].

fusion excitation function from the experimental data is about 5 × 10−4 and for this case,
the centroid of the barrier distribution is roughly reproduced whereas the right side part of
the distribution is not reproduced well. For N = 2, the deviation decreases sharply, down
to less than 0.3 × 10−4. When the number of Gaussian functions further increases, we find
the deviation of the fusion excitation function from the measured data decreases slowly. The
obtained barrier distributions with N = 4 and N = 3 are very close to each other. Here we
should state that the number of Gaussian functions to fit the barrier distribution is not identical
with the number of barriers involved, it is only a feature of the fit procedure.

In table 1, we list the obtained mean barrier heights of some selected reactions using the
proposed method with the number of Gaussian functions N = 1, 2 and 3, respectively. The
fusion barriers given in [12] and [8] which are mentioned in the previous section are also
listed for comparison. In addition, we also list the mean barrier heights Bth of the empirical
barrier distributions proposed in [14] which will be discussed in the following section. One
finds that the fusion barriers of [8] which were obtained by fitting the experimental data at
energies above the average barriers are systematically higher than the corresponding barriers
of [12] which were obtained by using the single Gaussian fitting procedure. In this work, the
obtained mean barrier heights Bm are very close to those of [12] when taking N = 1. We
find that the most probable fusion barriers of the reactions are reproduced well with the single
Gaussian fitting procedure. When taking N = 2, the obtained Bm increase for most of the
reactions listed in the table, which indicates that the fusion barrier distribution is not symmetric
generally and the right side (high energy part) of the distribution is broader than the left side
for most of the selected reactions. The asymmetric character of the distribution has been
found by both experiments and theoretical analysis and been taken into account in empirical
barrier distribution functions (see [14, 27]). The differences between the obtained mean barrier
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Figure 3. (Colour online) Distribution of the barrier heights of 16O+208Pb. The dashed, solid,
crossed and dash-dotted curves denote the Dfus(B) with the number of Gaussian functions from
N = 1 to N = 4, respectively. The squares denote the results obtained with equation (9). In
the inserted figure, the average deviations from the measured fusion cross sections are shown as a
function of N.

Table 1. Fusion barriers obtained with different methods.

Reaction Data in [12] Bm (N = 1) Bm (N = 2) Bm (N = 3) Data in [8] Bth

16O+144Sm [4] 60.5 60.23 60.95 60.91 61.03 60.86
17O+144Sm [4] 60.6 60.24 60.25 60.34 60.57 60.52
16O+148Sm [4] 59.4 59.64 59.71 59.71 59.83 60.46
16O+154Sm [4] 58.4 58.63 59.18 59.22 59.35 59.73
16O+186W [4] 68.3 67.92 68.62 68.63 68.87 69.13
16O+208Pb [16] 73.6 73.63 74.18 74.35 74.52 75.06
19F+208Pb [22] – 82.59 82.52 82.50 82.96 83.65
16O+92Zr [17] – 41.41 41.43 41.49 41.96 41.98
28Si+92Zr [17] – 70.01 70.65 70.65 70.93 70.98
36S+90Zr [24] 77.0 77.02 77.66 77.48 77.97 79.55
36S+96Zr [24] 74.9 74.77 75.73 75.44 75.61 78.54
40Ca+46Ti [25] 57.3 57.28 57.78 57.52 57.89 59.20
40Ca+48Ti [25] 57.1 57.12 57.43 57.35 57.88 58.71
40Ca+50Ti [25] 57.3 56.92 57.23 57.23 58.21 58.21
40Ca+90Zr [5] 96.1 96.09 96.37 96.30 96.88 99.24
40Ca+96Zr [5] 93.6 93.64 94.46 94.41 94.59 97.80
40Ca+48Ca [26] 51.8 51.66 51.51 51.59 52.00 52.81
48Ca+48Ca [26] 51.2 51.13 51.41 51.32 51.49 51.47

heights with N = 2 and with N = 3 are very small and the deviations are smaller than 0.5%.
Table 1 and figure 3 indicate that one can get a reasonable balance between accuracy and
computational cost if taking two Gaussian functions for approximately describing the fusion
barrier distributions.

In table 2, we list the corresponding fusion radii Rfus of the reactions in table 1 with the
proposed method and the methods in [8, 12]. We find that the extracted fusion radii based on
the same fusion excitation functions are different with different methods. The differences of
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Figure 4. (Colour online) Fusion excitation function of 40Ca+96Zr. The dash-dotted and the
dashed curves denote the calculated results with the methods in [8, 12], respectively. The solid
curves denote the results with the proposed method by taking N = 2. The squares denote the
experimental data.

Table 2. Fusion radii obtained with different methods.

Reaction Data in [12] Rfus (N = 1) Rfus (N = 2) Rfus (N = 3) Data in [8]

16O+144Sm [4] 10.3 10.06 10.63 10.61 10.85
17O+144Sm [4] 10.8 10.43 10.44 10.49 10.79
16O+148Sm [4] 10.2 10.44 10.52 10.51 10.76
16O+154Sm [4] 9.6 9.91 10.45 10.48 10.76
16O+186W [4] 10.6 10.24 10.78 10.78 11.12
16O+208Pb [16] 10.5 10.46 10.92 11.02 11.31
19F+208Pb [22] – 11.06 11.04 11.03 11.50
16O+92Zr [17] – 9.52 9.54 9.55 10.02
28Si+92Zr [17] – 9.49 9.87 9.88 10.19
36S+90Zr [24] 10.8 10.83 11.47 11.30 10.54
36S+96Zr [24] 11.0 10.84 11.73 11.51 10.79
40Ca+46Ti [25] 9.4 9.60 10.00 9.81 9.77
40Ca+48Ti [25] 9.4 9.65 9.79 9.76 9.85
40Ca+50Ti [25] 9.4 9.26 9.51 9.52 9.84
40Ca+90Zr [5] 10.0 9.92 10.13 10.09 10.53
40Ca+96Zr [5] 9.3 9.27 9.82 9.80 10.12
40Ca+48Ca [26] 11.5 11.29 11.17 11.22 9.99
48Ca+48Ca [26] 11.2 11.06 11.43 11.33 10.16

the fusion radii obtained in [12] and those in [8] are quite large for some reactions, for example,
the differences are larger than 1 fm for the reactions 40,48Ca+48Ca and 16O+154Sm. With the
proposed method, the fusion radii can also be obtained. The obtained results with N = 3 and
those with N = 2 are close to each other and the differences between them �Rfus � 0.1 fm
for most of the selected reactions. In order to understand the differences of the results due to
the different methods, we studied the fusion cross sections of 40Ca+96Zr. Figure 4 shows the
calculated fusion excitation functions in [8, 12] and that with the proposed method by taking
N = 2. In order to see the results more clearly, in figures 4(a) and (b) we adopt linear and
logarithmic scale for the fusion cross sections, respectively. One finds that the fusion cross
sections are reproduced better with the modified Wong formula adopted in [8] than that with
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Table 3. Obtained fusion barrier distributions for some selected reactions using the proposed
method with the number of Gaussians N = 2.

Reaction FWHM (MeV) aL (MeV) Bm (MeV) Rfus (fm) χ2
log × 10−4

16O+144Sm [4] 1.61 1.43 60.95 10.63 5.7
17O+144Sm [4] 3.45 2.80 60.25 10.44 3.5
16O+148Sm [4] 4.38 4.36 59.71 10.52 2.1
16O+154Sm [4] 4.50 5.66 59.18 10.45 13.4
16O+208Pb [16] 5.46 2.38 74.18 10.92 0.3
19F+208Pb [22] 5.52 4.19 82.52 11.04 0.3
40Ca+90Zr [5] 3.63 2.08 96.37 10.13 1.3
40Ca+96Zr [5] 8.78 4.59 94.46 9.82 0.6
40Ca+48Ca [26] 3.36 2.45 51.51 11.17 7.0
48Ca+48Ca [26] 3.15 1.33 51.41 11.43 3.3

the single Gaussian fitting procedure proposed in [12] at energies above the average fusion
barriers, but the latter gives much better results at sub-barrier fusion. It means that the former
method focuses on the above-barrier fusion while the latter one seems to be more suitable for
describing fusion reaction at energies near the average barrier. With our proposed method, the
fusion cross sections at energies both below and above the average barrier can be reproduced
remarkably well (with χ2

log = 0.6 × 10−4).
Now let us discuss the characteristics of the fusion barrier distributions. With the barrier

distribution determined with N = 2, the mean barrier height, the width and especially the
diffuseness of both sides of the distribution can be obtained. In table 3, we list the full widths
at half maximum (FWHM) of the distributions and the left diffuseness aL of the distributions
for some selected reactions. The aL is defined as the barrier height difference between the
10% of maximum and 90% of maximum at the left side of the distribution. We also list in the
table the mean barrier heights Bm, the corresponding fusion radii Rfus of the determined barrier
distributions of those reactions and the corresponding average deviation χ2

log. From table 3
one sees that the values of left diffuseness aL increase obviously from 16O+144Sm, 16O+148Sm
to 16O+154Sm which shows the same tendency as the sub-barrier fusion cross sections of those
reactions (see [14]). One can also find that the aL values for 40Ca+90Zr and 48Ca+48Ca are
much smaller than those of 40Ca+96Zr and 40Ca+48Ca, which is consistent with the fact that
the sub-barrier fusion cross sections for 40Ca+90Zr and 48Ca+48Ca are much smaller than those
of 40Ca+96Zr and 40Ca+48Ca. Thus, it seems to us that the left diffuseness of the fusion barrier
distribution is closely related to the enhancement and suppression effect of sub-barrier fusion
cross sections due to structure effects.

3. Theoretical description of the fusion barriers

In this section, we first present a systematic comparison between the characteristics of
the fusion barrier distributions determined by the proposed method and those of empirical
distributions based on the nucleus–nucleus potentials calculated with the Skyrme energy-
density functional within the extended Thomas–Fermi approach for 120 fusion reactions.
Then, the influence of the static deformation and the deformation due to excitation of the
reaction partners on the reduction of the fusion barriers will be studied for a series of reactions
induced by 16O. Finally, some different nuclear potentials will be investigated by comparing
the corresponding calculation results.
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3.1. Empirical barrier distribution

In our previous paper [14], we applied the Skyrme energy-density functional to study heavy-
ion fusion reactions. The barriers for fusion reactions were calculated by the Skyrme energy-
density functional together with the semi-classical extended Thomas–Fermi method [28].
Based on the potential barrier obtained, we proposed a parametrization of the empirical barrier
distribution which is a superposition of two Gaussian functions to take into account the multi-
dimensional character of the real barrier and then applied it to calculate the fusion excitation
functions of light and intermediate–heavy fusion systems in terms of the barrier penetration
concept. A large number of measured fusion excitation functions at energies around the
fusion barriers were reproduced well. Now we make a systematic comparison of the
parametrization of the empirical barrier distributions with those determined by the method
given in this work.

For the reader’s convenience, the empirical barrier distribution is briefly introduced here.
We assume the weight function D(B) in equation (1) to be a superposition of two Gaussian
functions D1(B) and D2(B),

D1(B) =
√

γ

2
√

πb1
exp

[
−γ

(B − B1)
2

(2b1)2

]
(10)

and

D2(B) = 1

2
√

πb2
exp

[
− (B − B2)

2

(2b2)2

]
, (11)

with

b1 = 1
4 (B0 − Bc), (12)

b2 = 1
2 (B0 − Bc), (13)

B1 = Bc + b1, (14)

B2 = Bc + b2. (15)

Here B0 is the height of the potential barrier obtained with the Skyrme energy-density
functional together with the semi-classical extended Thomas–Fermi method [14]. The quantity
Bc = f B0 is the effective barrier height empirically taking into account the coupling effects to
other degrees of freedom, such as dynamic deformation. We set the reduction factor f = 0.926
for the Skyrme interaction SkM* [29], which is the same as in [14]. Based on D1(B) and
D2(B), an effective weight function Deff(B) by which the fusion excitation function can be
calculated, is proposed,

Deff(B) =
{
D1(B) : B < Bx

Davr(B) : B � Bx,
(16)

with Davr(B) = (D1(B) + D2(B))/2. The Bx denotes the position of the left crossing point
between D1(B) and Davr(B). According to equations (10)–(16) the peak and the width of
Deff(B) only depend on the height of the potential barrier B0 except the γ in D1(B). The
quantity γ in D1(B) is a factor which empirically takes into account the structure effects [14].
For the fusion reactions with non-closed-shell nuclei but near the β-stability line and for the
fusion reactions at energies near and above the barrier we set γ = 1. With the effective
weight function Deff(B), the mean barrier height Bth = ∫

BDeff(B) dB
/ ∫

Deff(B) dB, the
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Figure 5. (Colour online) Relative deviations of the extracted mean barrier height Bm from the
calculated mean barrier height Bth (open circles) and the most probable barrier height Bm.p. (solid
circles) for 120 fusion reactions. The distribution of the deviations between Bm and Bm.p. for these
reactions is shown in the inserted figure.

most probable barrier height Bm.p. and the FWHM of the distribution can be easily obtained.
Bth is always slightly higher than Bm.p. because of the shape of Deff(B). The calculated mean
barrier heights by setting γ = 1 for some reactions are listed in table 1.

We have investigated the fusion barrier distributions for a total of 120 fusion reactions
from light to intermediate–heavy systems. In figure 5, we show the relative deviations of the
extracted mean barrier height Bm from Bth and Bm.p. by taking N = 2 and calculated with
Deff(B) by setting γ = 1, respectively. From the figure, one sees that the relative deviations
between Bm and Bth are smaller than 0.025 for more than 80% reactions. In addition the most
probable barrier heights Bm.p. are also close to the extracted Bm and the relative deviations
between Bm and Bm.p. (solid circles) are smaller than 0.025 for 88% reactions and 0.01 for
54% reactions. In figure 6 we compare the fusion radii Rfus extracted by the proposed method
with those of the entrance-channel fusion potentials obtained with the Skyrme energy-density
functional together with the extended Thomas–Fermi approach [14] for the 120 reactions. The
extracted fusion radii are reproduced reasonably well. Figures 5 and 6 indicate that the global
features of the empirical barrier distributions proposed in [14] are in good agreement with
those of the barrier distributions determined by the present method.

In figure 7 we present a comparison between the extracted fusion barrier distributions Dder

and the empirical ones Deff for the reactions 12C+92Zr, 19F+208Pb and 16O+144,154Sm. The
squares and the crossed curves denote the results for Dder and Deff , respectively. The shapes
of the fusion barrier distributions extracted from experimental data are well reproduced by the
parametrization of the empirical barrier distribution proposed in [14].

By using the proposed empirical barrier distribution, the fusion barriers of a large number
of reactions can be described reasonably well, which indicates that (1) the model is very
useful for prediction of the fusion barriers and the fusion cross sections of unmeasured fusion
systems; (2) there exist some similar characteristics of the fusion barriers in the reactions with
either deformed nuclei or spherical nuclei. For understanding the physics behind the fusion
barrier distributions, the influence of the deformation of the reaction partners on the reduction
of the fusion barriers is investigated in the following subsection.
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Figure 6. (Colour online) Fusion radii of 120 selected reaction systems. The solid and open circles
denote the extracted results with N = 2 and the calculated results with the Skyrme energy-density
functional together with the extended Thomas–Fermi approach (ETF2), respectively. A1 and A2
denote the mass numbers of the projectile and target nuclei, respectively.
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Figure 7. (Colour online) Fusion barrier distributions for the reactions 12C+92Zr, 19F+208Pb
and 16O+144,154Sm. The squares and the crossed curves denote the results for Dder and Deff ,
respectively.

3.2. Reduction of fusion barrier due to deformation of nuclei

We should mention that the entrance-channel potential obtained with the Skyrme energy-
density approach is based on the frozen-density approximation; therefore it gives the uncoupled
fusion potential of a reaction system which could be higher than the average fusion barrier
energy of the system extracted experimentally. In this work, the influence of the deformation
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of nuclei on the reduction of the fusion barriers is systematically explored for a series of fusion
reactions with 16O projectile nuclei. The entrance-channel potential for a certain reaction
is calculated with the Skyrme energy-density functional together with the ETF2 approach in
which the deformation and orientation of the target nuclei are taken into account. The density
distributions of protons (i = p) and neutrons (i = n) of the reaction partners are taken to be
deformed Fermi distribution for convenience, which reads

ρi(r, θ) = ρ0i

[
1 + exp

(
r − R(θ)

ai

)]−1

, i = {n, p}, (17)

with

R(θ) = R0i


1 +

∑
λ�2

βλYλ0(θ)


 (18)

for an axially symmetric deformed or deformable nucleus. Here �β ≡ {βλ} are dimensionless
deformation parameters of multi-polarity λ = 2, 3, 4, 5 . . . and Yλ0 are the corresponding
spherical harmonics. In this work, we assume that the surface diffuseness ai and the radius R0i

of the nucleus are frozen and taken as the corresponding results of the spherical framework
[14] for the sake of simplicity. The central densities ρ0i are obtained according to the
conservation of particle numbers. We have checked the central densities of heavy nuclei
when the deformation parameters are varied and found that the change of ρ0i with �β is quite
small. In addition we have checked the entrance channel fusion barriers with the densities
determined by the Skyrme Hartree–Fock calculations and by the Fermi distributions within the
restricted density variational approach for a series of reactions induced by 16O, and found that
the deviations of the barrier heights between the two cases are about 1–2 MeV (the barriers in
the latter case are higher due to the smaller surface diffuseness of the obtained densities with
ETF2 for the reaction partners [14]).

The influence of the static quadrupole deformation of deformed target nuclei on the
fusion barriers is investigated for fusion reaction 16O+154Sm. We study the influence of the
orientation angle � between the symmetry axis of the deformed target nuclei and the line
connecting the centers of the nuclei on the entrance-channel potential for 16O+154Sm. For
this reaction the lowest barrier is obtained for the orientation � = 0◦, i.e. when 16O touches
the tip of the deformed 154Sm target, while the highest barrier is obtained for � = 90◦, when
16O touches the side, as shown in figure 8. The lowest barrier is close to the extracted most
probable fusion barrier denoted by the dashed arrow in figure 8. The fusion barrier B0 obtained
without the deformation of 154Sm taken into account is also shown in figure 8 by the solid
arrow for comparison. One sees that the fusion barrier B0 is reduced by about 6% due to the
static quadrupole deformation of the target. For fusion reactions 16O+186W and 16O+238U, we
get the same conclusion. From figure 8 one can also learn that there exists a distribution of
the barrier heights due to the variation of the orientation angle � of the deformed target. We
then investigate the relations between the FWHMs of the fusion barrier distributions and the
orientations of the deformed targets for the fusion reactions with 16O and 48Ca bombarding on
the deformed targets 154Sm, 186W and 238U. The differences between the barriers obtained with
� = 90◦ and those with � = 0◦, denoted by B(90) − B(0), are obtained and shown in figure 9.
The extracted FWHMs of the barrier distributions determined by the proposed method are also
shown for comparison. In addition, the FWHM of the empirical barrier distribution Deff(B)

(see equations (10)–(16)) can be approximately expressed as a function of B0 with γ = 1,

FWHM ≈ 0.0755B0. (19)

One sees that the extracted FWHMs of the barrier distributions are comparable with the largest
barrier differences B(90) − B(0) due to different orientations which can be well described with
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16O+154Sm. Here the static quadrupole deformation β2 of 154Sm is determined with the finite
range droplet model (FRDM) [31]. The dashed arrow denotes the extracted most probable fusion
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Figure 9. FWHMs of fusion barrier distributions for reactions with 16O and 48Ca bombarding on
the deformed targets 154Sm, 186W and 238U. The open circles denote the largest barrier differences
B(90) −B(0) due to different orientations, the solid line denotes the results with equation (19). The
extracted FWHMs of the barrier distributions are also presented by the stars.

equation (19). It indicates that (1) the variation of the orientations of the deformed target plays
a role for the width of the barrier distribution; (2) the influence of the static deformation of
the reaction partners on the fusion barriers is partly taken into account in the empirical barrier
distribution.

Similarly, for fusion reactions with near-spherical nuclei, the surface vibration of nuclei
will also affect the barrier distribution. It was shown in [27] that dynamic deformation of
nuclei plays an important role for the fusion barrier. In this work, we investigate the reduction
of the fusion barriers due to the deformation of the reaction partners caused by excitation with
the Skyrme energy-density functional together with the extended Thomas–Fermi approach. It
is known that the total energy of the reaction system is uniquely determined by the density
distributions of the system based on the Skyrme energy-density functional approach [14].
Therefore the potential energy surface Etot(R, �βp

, �βt
) of the reaction system can be obtained
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is drawn at the right side of the figure.

and expressed as a function of the distance R between two nuclei and the deformation of
the projectile �βp

and of the target �βt
when the densities are determined by equation (18)

and the orientation angle is set as zero. According to the potential energy surface, one may
obtain the quasi-adiabatic fusion barrier. In order to distinguish the deformation of nuclei due
to excitation from the static deformation of ground state nuclei, we call the deformation of
near-spherical nuclei caused by excitation in fusion process non-ground-state deformation in
this work. We first investigate the influence of non-ground-state octupole deformation β3 of
208Pb on the fusion barriers in reaction 16O+208Pb, since it is known that the 2.615 MeV 3−

vibration state of 208Pb is the first excitation state which is usually taken into account in the
fusion-coupled channel calculation [32]. Figure 10 shows the potential energy surface for this
reaction when taking the distance R and the octupole deformation βt

3 of 208Pb into account
and setting the other deformation parameters to zero. One finds that there exists a saddle point
at deformation βt

3 = −0.1 and distance R = 11.75 fm. The minus sign in the βt
3 of 208Pb

means that the target has a nose toward the projectile nucleus (see figure 10). It indicates
that the non-ground-state octupole deformation of 208Pb influences the fusion process, and a
possible dynamic fusion path is shown in the figure by a dashed line. This static method only
roughly gives the possible dynamical fusion path. More realistic dynamic process should be
described with the time-dependent Hartree–Fock (TDHF) calculations [9–11]. Comparing
with the uncoupled fusion barrier B0 = 78.5 MeV, the fusion barrier is reduced by 2.7 MeV
due to the octupole deformation of 208Pb. When the β5 of 208Pb is simultaneously taken into
account (the next excitation state of 208Pb is the 3.198 MeV 5− state), the fusion barrier is
reduced to 74.2 MeV. And when the octupole deformation of 16O is further involved, the
fusion barrier is continuously lowered to 73.7 MeV which is very close to the extracted most
probable fusion barrier and shown in figure 3 by the solid arrow.

The influence of the non-ground-state quadrupole and octupole deformations of the target
on the fusion barriers is studied systematically for a series of fusion reactions with 16O
bombarding on near-spherical nuclei such as 16O, 92Zr, 112,116Sn, 144Sm and so on. For most
even-even near-spherical nuclei the low-lying 2+ vibration state is the first excitation state.
We calculate the fusion barrier at the saddle point when β2 is taken into account similar to
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Figure 11. (Colour online) Reduction of fusion barriers due to non-ground-state quadrupole and
octupole deformations of target nuclei. The open and solid circles denote the results with β2 and
with both β2 and β3 of target taken into account, respectively. The stars denote the difference
of the barriers between the uncoupled fusion barrier B0 and the extracted most probable fusion
barrier. The solid line denotes the results obtained with the empirical barrier distributions (see
equation (20)).

figure 10. Figure 11 shows the relation between the reduction of the fusion barrier �B and
the uncoupled fusion barrier B0 for these reactions. The open and solid circles denote the
results with β2 and with both β2 and β3 of the target nuclei taken into account, respectively.
The stars denote the reduction of the fusion barriers based on the extracted most probable
fusion barriers. In addition, based on the empirical barrier distribution mentioned in the above
sub-section, the difference of the barriers between the uncoupled fusion barrier B0 and the
most probable barrier calculated with equations (10)–(16) by setting γ = 1 can be obtained
and an approximated expression

�B ≈ 0.054B0 (20)

is given with good accuracy. From the figure, one finds that the reductions of the fusion
barriers increase with the barrier heights. The calculated reductions of the barriers due to
the non-ground-state deformations of the target nuclei are close to the experimental data
which can be described reasonably well with equation (20). It seems to us that the fusion
barriers are systematically reduced by about 5% due to the non-ground-state deformation of
the near-spherical nuclei. In [32] the authors studied the fusion reaction 16O+208Pb by using
the fusion-coupled channel model and found that the inclusion of couplings to the target and
projectile excitation states effectively reduces the uncoupled barrier height by 3.8 MeV (5%)

in total, which is consistent with our estimation.
Figure 12 shows the relation between the obtained non-ground-state quadrupole

deformation βt
2 and the mass Atarg of the target nuclei for a series of reactions induced

by 16O. One finds that the obtained non-ground-state quadrupole deformations increase with
the size of the target nuclei generally. For heavy targets, the obtained βt

2 is about 0.24 which
is comparable with the static quadrupole deformations of the lanthanides and actinides. From
the above discussion about the barrier reduction due to the static deformation of nuclei, we
learn that the lowest barrier of the reaction system is obtained when 16O touches the tip of the
prolate deformed target, and is close to the most probable fusion barrier. This indicates that the
reduction of the fusion barriers due to the static deformation in fusion reactions with deformed
nuclei and that due to the deformation caused by excitation in reactions with near-spherical
nuclei are comparable, and the corresponding barrier reduction factors are close to each other.
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solid circles denote the static quadrupole deformations of 154Sm, 186W and 238U obtained with the
FRDM model [31].

3.3. Comparisons among different nuclear interactions

Finally, let us discuss the reduction factor of the empirical barrier distribution which appeared
in equations (10)–(16). In the parametrization of the empirical barrier distribution proposed
in [14], a reduction factor f for the effective barrier is introduced to take into account the
coupling effect to other degrees of freedom, which in principle should depend on the effective
interaction adopted. Now we study how the reduction factor f changes when a different
effective interaction is adopted. As proposed in [14] except the factor γ which is introduced
for considering the structure effect of the reaction partners, the parametrization of the barrier
distribution for a fusion reaction is completely determined by the potential barrier B0 which
is calculated with the Skyrme energy-density functional together with the extended Thomas–
Fermi approach including all terms up to second order in the spatial derivatives (ETF2). Then
combining the parametrization of the barrier distribution with Wong’s formula, the fusion
excitation function can be calculated with equation (1). The f as a fitting parameter can be
obtained by minimizing the average deviation χ2

log of the calculated fusion excitation function
with B0 from the corresponding experimental data. In this work, the experimental data of the
fusion excitation functions at energies above the potential barriers for 120 fusion reactions from
light to intermediate–heavy systems are used to search for the optimal value of the reduction
factor for different Skyrme forces. In addition, for the widely used proximity potential [33]
and Woods-Saxon potential [7], the reduction factors are also investigated. Table 4 lists the
obtained optimal reduction factor fopt and the minimal average deviation χ2

log,m. One can see
from table 4 that the χ2

log,m values for the Skyrme energy-density functional together with the
ETF2 approach are smaller than those found with both the macroscopic Woods-Saxon and
proximity potential. The minimal average deviation χ2

log,m by the proximity potential (Prox.)
is obviously smaller than that by the Woods-Saxon potential (W-S.), which indicates that
the former describes the fusion excitation function systematically better than the latter. The
χ2

log,m for the case using the SIII interaction, which has a very large compressibility modulus
K∞ = 355 MeV, is the largest one among those obtained with Skyrme interactions, while the
χ2

log,m for the case using the SkM* interaction is the smallest. In addition, the optimal value
fopt of the reduction factor obtained by this method for the SkM* force is 0.927, which is very
close to that we adopted in [14].
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Table 4. Optimal value fopt of the reduction factor and the corresponding minimal deviation χ2
log,m

from the experimental data of fusion excitation functions for 120 fusion reactions.

interaction W-S. [7] Prox. [33] SIII [34] SkP [35] SLy4 [36] SLy7 [36] BSk8 [37] SkM* [29]

fopt 0.964 0.923 0.903 0.954 0.937 0.915 0.903 0.927
χ2

log,m 0.0189 0.0095 0.0068 0.0065 0.0063 0.0063 0.0062 0.0061

4. Conclusion and discussion

In this work, the fusion barriers of a large number of fusion reactions have been studied
systematically. We have proposed a method to obtain the distribution of the fusion barrier
heights, which is the superposition of a set of Gaussian functions with parameters determined
by the measured fusion excitation function. The advantage of the method is that in contrast to
the second derivative method less data points are needed to achieve a similar result, and thus a
lot of experimental data obtained before with a little lower precision can also be analyzed for
obtaining helpful information about the fusion barriers. The main characteristics of the fusion
barrier distributions, such as the mean barrier heights, full widths at half maximum (FWHM)
and especially the diffusenesses at both sides of the distributions can be determined more
precisely than those of the single Gaussian fitting approach [12]. The left side diffuseness
of the distribution has a close relation with the enhancement and suppression of fusion cross
sections at sub-barrier fusion. The mean barrier heights determined from the measured data
with the method given in this work are compared with the parametrization of the empirical
barrier distributions proposed in [14] for a total of 120 fusion reactions. It is found that
the global features of the empirical barrier distributions are in good agreement with those
determined from the experimental data for most reactions.

For understanding the physics behind the extracted and the empirical fusion barrier
distributions, the influence of the static deformation and the deformation due to the excitation of
the reaction partners on the reduction of the fusion barriers has been systematically investigated
for a series of reactions induced by 16O. We find that the reduction of the fusion barriers
due to the static deformation in the fusion reactions with deformed nuclei and that due
to the deformation caused by the excitation in the reactions with near-spherical nuclei are
comparable. A barrier reduction factor is found to be about 5%. In addition, by searching for
the optimal value of the reduction factor of the empirical barrier distribution, we find that the
nucleus–nucleus interaction potentials calculated with the common used Skyrme interactions
can give a good description of the fusion cross sections at energies near and above the barriers.
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