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Statistical Behaviors of Quantum Spectra in Superheavy Nuclei∗
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Abstract From the point of view of the interplay between order and chaos, the most regular single-particle motion
of neutrons has been found in the superheavy system with Z = 120 and N = 184 based on the Skyrme–Hartree–Fock
model and in the system with Z = 120 and N = 172 based on the relativistic mean-field model. It has been shown that
the statistical analysis of spectra can give valuable information about the stability of suprheavy systems. In addition it
may yield deep insight into the single-particle motion in the mean field formed by the superheavy system.
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1 Introduction
To predict the existence of shell-stabilized superheavy

nuclei has been a strong motivation for heavy-ion physics.
In the recent three decades with the rapid development of
experimental facilities more and more new isotopes have
been produced and the expected magic proton number
Z = 114 seems to be in reach.[1,2] Superheavy elements
are thus a topic of current interest and it is worth while
to look at them using various theoretical approaches.

The macroscopic-microscopic model was developed
quite early. It is based on a generalized liquid-drop model
that governs the bulk properties and a single-particle po-
tential from which the shell correction is obtained.[3,4]

An alternative macroscopic-microscopic approach is the
self-consistent mean-field model. The most widely used
self-consistent mean-field models in nuclear physics are
the Skyrme–Hartree–Fock (SHF)[5] approach and the rel-
ativistic mean-field model (RMF).[6,7]

Based on the above mean-field models one can cal-
culate the shell corrections, and predict the location of
expected magic superheavy nuclei. The shell correction
resulting from the fluctuation of the energy levels very
close to Fermi level provides us with information of shell
closures. An alternative shell correction is provided by
the statistical study of spectra. As is well known, the
statistical property of quantum spectra is closely related
to the coupling between energy levels, which depends on
the symmetry and structure of the mean field. If the sys-
tem under consideration has a high degree of symmetry
resulting in strong degeneracy of energy levels, the nearest

neighboring level spacing distribution will obey a Poisson
distribution. This means that the system is quite stable
against chaos. If the symmetry of system is broken, a cou-
pling between levels (i.e. their mutual repulsion) appears,
and the level-spacing distribution becomes a Wigner dis-
tribution. This means that the system will be unstable
against chaos.

From the point of view of the interplay between order
and chaos, the statistical features of spectra for low-lying
nuclear energy levels and for energy levels at excitation
energy around the neutron separation energy have been
well studied both experimentally and theoretically.[8−13]

Based on the realistic shell model calculations the spectral
statistics of calcium isotopes has been demonstrated.[14] It
has also been reported[15] that for a prolate deformation
virtually no chaos is discernible while for the oblate case
the motion shows strong chaos when the octupole term is
turned on.

Recently, the statistical features of spectra for the de-
formed space explored by the fission have been studied
and a new insight into fission and hyperdeformation has
been given.[16] The extension of this kind of investigations
to superheavy nuclear systems is very valuable. Through
analysis of statistical properties of spectra in superheavy
nuclei we expect to obtain new insight into the behavior
of the single-particle motion in the mean field formed by
superheavy nuclear systems and, furthermore, to get im-
portant information about the stability of systems against
chaos, i.e. the possible existence of shell-stabilized super-
heavy nuclei.
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2 Method
Aiming for this goal, in this paper we will study the

nearest neighbor level-spacing distributions in superheavy
systems based on mean-field models. In order to cal-
culate the energy levels of superheavy nuclear systems,
the SHF approach and the relativistic mean-field models
are employed.[17,18] In the SHF model, nucleons are de-
scribed as non-relativistic particles moving independently
in a common self-consistent field. The energy functional
of nucleons is

εSHF = εkin + εsk + εsk,sl + εc + εpair − εcm , (1)

where εkin is the kinetic energy functional, εsk is the
Skyrme functional, εsk,sl is the spin-orbit term, εc is the
Coulomb energy (including the exchange term), εpair is the
pairing energy, and εcm is the center of mass correction.
In the RMF model, nucleons are described as independent
Dirac particles moving in local isoscalar-scalar, isoscalar-
vector, and isovector-vector mean fields usually associated
with σ, ω, and ρ mesons, respectively. The energy func-
tional of nucleons in the RMF model,

εRMF = εkin + εσ + εω + ερ + εc + εpair − εcm , (2)

is composed of the kinetic energy of nucleons, the interac-
tion energies of the σ, ω, and ρ fields, and the Coulomb
energy. The pairing energy and center of mass correction
are treated in the same way as in the SHF model.

The single-particle energies needed in the statistical
analysis of spectra are eigenvalues of the one-body Hamil-
tonion of the nucleons obtained by variation of the energy
functional (1) or (2). The SHF and RMF calculations are
carried out using the coordinate-space codes of Refs. [19]
and [20]. Since the level density of neutrons (protons)
changes greatly with the level energy, we introduce an
unfolding procedure[21] in order to study local statistical
properties of levels, such as the level spacing distribution.
This means that for a given stretch of levels (with the
same angular momentum and parity), one has to divide
them into many sets. In each set, the local mean level
spacing S̄ is calculated by the energy interval and the
number of levels within the set. From this mean spacing,
the level spacing distribution for a given set of levels is
readily available. The resultant distribution is obtained
by an ensemble average.

To quantify the regularity (or chaoticity) of the level
spacing distribution in terms of a parameter, we compare
it with the Brody distribution

P (s, ω) = α(ω + 1)sω exp(−αsω+1) , (3)

where
α =

[
Γ
(ω + 2

ω + 1

)]ω+1

. (4)

This distribution interpolates between the Poisson distri-
bution (ω = 0) of regular systems and the Wigner distri-
bution (ω = 1) of chaotic ones (GOE). The parameter ω

can be used as a simple quantitative measurement of the
degree of regularity (or chaoticity), that is, the smaller ω

is, the larger the stability of the corresponding system is.

3 Results and Discussions
Since we use the coordinate space code to make the

SHF and RMF calculations, it is necessary to check
whether the size of the coordinate-space box is sufficient.
To do so, we examine the influence of the box size on the
energy levels and statistical results of spectra for 208Pb.
As is well known, 208Pb is a very stable nucleus because of
the doubly magic structure. Therefore, the typical Pois-
son distribution of the level spacings is expected in this
case, which provides a good check for the minimum box
size needed in the model calculations.

In Fig. 1 we show the statistical properties of the spec-
tra by histograms for different sizes of coordinate-space
box for 208Pb, where the energy levels are produced by the
RMF model with force of NL-Z2. For comparison, Poisson
and Wigner distributions are also shown by dashed and
dotted lines, respectively. Furthermore, to quantify the
regularity of level spacing distributions the best fit Brody
parameters are also denoted in each of the subfigures.
Clearly with increasing the size of the coordinate-space
box the level spacing distribution gradually approaches
a Poisson distribution and the best-fit Brody parameters
approach zero. When the size of the coordinate-space box
is larger than 22 fm (Figs. 1(c) and 1(d)), one can obtain
a very regular state (stable state) for 208Pb. However, for
the case of a smaller box (see Figs. 1(a) and 1(b)) the
level-spacing distribution greatly deviates from the Pois-
son distribution, which is in conflict with the well-known
fact that 208Pb is very stable. This means that the results
obtained in these cases are not physically correct and can-
not be accepted.

We would therefore like to mention that the statistical
analysis of spectra is one of the most effective approaches
for checking whether the coordinate or configuration in
mean-field calculations is large enough or not. Thus, in
the following SHF and RMF calculations we always set
the size of the coordinate-space box larger than 22 fm.

According to the shell correction study based on SHF
model calculations,[17,18,22] the spherical magic neutron
number in the superheavy element region is about N =
184 and all isotones with N = 184 have been predicted
to have spherical shapes. The N = 172 shell effect is
also strong, but it exhibits an evident force dependence.
In Refs. [17], [18], and [22], the proton shell corrections
were also studied and it was found that the proton shell
corrections are generally smaller than those for the neu-
trons. With this knowledge, we choose the systems with
a fixed proton number Z = 120 and neutron numbers
N = 150, 158, 164, 172, 182, 184, and 190, respectively, for
this investigation.
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Fig. 1 The nearest-neighbor level-spacing distributions of 208Pb for different sizes of coordinate-space boxes. Subfigures
(a), (b), (c), and (d) stand for box sizes of 12, 17, 22, and 30 fm, respectively. The histograms are our numerical results.
The dashed lines and dotted lines represent a Poisson distribution and Wigner distribution, respectively. The best-fit
Brody parameters are also indicated in each of the subfigures.

As the first step to study the stability of superheavy
systems from the statistical aspect of the spectra, we per-
form calculations with the SHF model with several differ-
ent versions of the Skyrme force including the force SLY6
and then make systematic statistical analysis of the neu-
tron levels for all the above systems. As an example, we
show the nearest-neighbor level-spacing distributions of
the neutron spectra for systems with neutron numbers
N = 158, 172, 184, and 190 in Fig. 2. The histograms rep-
resent our numerical results and for comparison we also
draw the Poisson and Wigner distributions in dashed and
dotted lines.

To quantify the regularity of the level-spacing distri-
butions we notice the Brody parameters in each of the
subfigures. It can be seen that with increasing neutron
numbers from 158 to 172 and then to 184 the level spac-
ing distributions of the neutrons gradually approach a typ-
ical Poisson distribution (see Figs. 2(a), 2(b), and 2(c)).
For the case with even more neutrons, such as N = 190,
however the distribution deviates from the Poisson distri-
bution (see Fig. 2(d)). Therefore the general tendency is
that the regularity shown by the level spacing distribu-

tions keeps increasing up to N = 184, but after N = 184,
this trend stops and the regularity decreases. From this
study we may draw a conclusion that for the system of
Z = 120 and N = 184 the most regular single-particle
motion of neutrons is expected in the mean field formed
by superheavy systems based on the SHF model. This
means that the corresponding system is more stable than
the other systems with the same proton number but dif-
ferent neutron numbers.

The RMF model was also used to investigate the pos-
sible existence of superheavy systems. In this study there
exist many parameter sets which differ in details. For the
purpose of the present study, we chose one of the most
successful parameter sets for heavy nuclear systems, NL-
Z2, to perform RMF calculations. In Refs. [17] and [18]
it was predicted that the minimum of the neutron shell
correction is located at N = 172 and the proton shell
correction at Z = 120 is strongly correlated to neutron
number N = 172 by looking at the proton shell correc-
tions along the chain of N = 172 and 184 isotones. Based
on this study we choose the same systems as with SHF for
investigation.
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Fig. 2 The nearest-neighbor level-spacing distributions for systems with proton numbers Z = 120 and neutron numbers
(a) N = 158, (b) N = 172, (c) N = 184, and (d) N = 190. The histograms are our numerical results based on the SHF
model. The dashed lines and dotted lines represent a Poisson distribution and Wigner distribution, respectively. The
best-fit Brody parameters are also indicated in each of the subfigures.

We carried out the statistical analysis of the quantum
spectra for those systems systematically. As an example,
the level-spacing distributions of neutrons for the systems
with Z = 120 and N = 158, 164, 172, and 184 are dis-
played by histograms in Fig. 3. The Poisson and Wigner
distributions are also shown in each of the subfigures for
comparison, and to quantify the regularity the Brody pa-
rameters are indicated in each subfigure. From this figure
we can see that the regularity shown by the level-spacing
distributions first increases and then decreases with in-
creasing neutron number. This behavior is similar to that
in the SHF case. The strongest regularity of the statistical
results (the typical Poisson distribution of level spacings),
however, appears for N = 172 in the RMF model and not
for N = 184 as in the SHF model. This model-dependent
difference in prediction of the most stable superheavy sys-
tems has also been found in the shell correction study.
This implies that there is the relation between the statis-
tical analysis of spectra and the shell correction in char-
acterizing the stability of systems.

In order to demonstrate that the statistical analysis of
spectra is a valuable approach in characterizing the sta-
bility of systems, let us make a comparison between it
and the shell correction approach. As is already men-

tioned, the shell correction reflecting the stability of sys-
tems results from the fluctuation of levels very close to
Fermi energy, and the statistical property of spectra de-
pends on the local fluctuation of a set of levels, which
relates the single particle motion to the stability of the
system against chaos. Based on these considerations, we
demonstrate the shell correction and Brody parameters
for superheavy systems of Z = 120 as functions of neu-
tron numbers in Figs. 4(a) and 4(b), respectively. In each
subfigure the solid line represents the results based on the
SHF model with the force SLY6, and the dashed line is for
the results based on the RMF model with the force NL-Z2.
Through the comparison between solid and dashed curves
in Figs. 4(a) and 4(b), we have found that there is quite a
similar behavior of the Brody parameter and shell correc-
tion as functions of neutron number in both the SHF and
the RMF. Therefore, we may conclude that the statisti-
cal analysis of spectra can indeed give very valuable in-
formation on predicting and studying suprheavy systems.
Although this study is very preliminary, the significance
of this kind of study can go far beyond the investigation
on the stability of superheavy systems and may also give
a deep insight into the single particle motion in the mean
field formed by the superheavy system, which is one of the
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most fundamental problems in superheavy nuclear study.
It may be hoped that this will open up a new research

field on the transition from order to chaos in superheavy
region.

Fig. 3 The same as Fig. 2 for systems with proton numbers Z = 120 and neutron numbers (a) N = 158, (b) N = 164,
(c) N = 172, and (d) N = 184. The histograms are our numerical results based on the RMF model.

Fig. 4 (a) The neutron shell corrections for Z = 120 isotopes calculated in the SHF model with the force SLY6 ( solid
line) and the RMF model with the force NL-Z2 (dashed line); (b) The best-fit Brody parameter as a function of neutron
numbers for Z = 120 isotopes. The solid and dashed lines stand for the SHF model with the force SLY6 and the RMF
model with the force NL-Z2, respectively.
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