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Behavior of the Lyapunov Exponent and Phase Transition in Nuclei *
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Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear
system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition.
We try to search a microscopic way to describe the phase transition in real nuclei. The Lyapunov exponent is
employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic
quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a
strong influence on the critical temperature. However, the collision term plays a minor role in the process of the

liquid—gas phase transition in finite systems.
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Many recent experiments in heavy-ion collisions
at energy above 50 MeV/nucleon have shown a very
rapid breakup of the hot composite system formed in
the reaction into several large fragments wih Z >3.1-3
In Ref. 4, Gilkes et al. studied the critical exponents
from the multifragmentation of Gold nuclei and found
that this exponents were close to the nominal liquid-
gas values. In parallel with experiments, there has
been an intense theoretical effort in understanding
the phenomenon.>~® Since the elementary nucleon-
nucleon interaction which exhibits a short range re-
pulsion followed by a long range attraction is similar
to a Van Der Waals force, it is expected that there
should exist an instability region of density and tem-
perature where a liquid-gas phase transition may oc-
cur in nuclear matter. Many works based on the ther-
modynamics and statistics have been done.*1° For a
real nucleus, as a typical finite system, the investiga-
tion on the critical phenomenon is much less than that
for nuclear matter, since for those finite systems we
firstly need to look for a good microscopic quantity to
characterize the liquid-gas phase transition.!!-'? This
is a quite general question which does not regard nu-
clear physics only but any domain of physics dealing
with finite systems like metallic clusters, fullerences,
etc. Therefore, it is of special interest to explore the
origin of the instability region to be linked to a liquid-
gas phase transition in real nuclei microscopically. In
order to study the critical phenomenon in the real nu-
clei microscopically, we consider the dynamic evolu-
tion of an excited (hot) nuclear system to simulate
the latter stage of the heavy ion reactions, that is, the
expanding process of the initial excited nuclear sys-
tems with the quantum molecular dynamics (QMD)
model.'® Through such investigation we want to learn
whether the Lyapunov exponent can characterize the
liquid-gas phase transition in real nuclei or not and
how the Coulomb, the size of the nuclear system as
well as the collision term influence on the critical tem-
perature.

In our calculation the potential considered includes
the Skyme, Yukawa, Coulomb, symmetric and mo-

mentum dependent terms. The Pauli principle is also
taken into account in our numerical simulation. The
potential and parameters are taken to be the same
with Ref.14. We create an initially excited nucleus
as follows: firstly we prepare a nuclear system in its
ground state according to the binding energy and nu-
clear radius, then the momentum of each nucleon is
sampled according to Fermi-Dirac distribution at a
certain value of the chemical potential and temper-
ature T. Through varying the temperature, we put
the different initial kinetic energy (initial excitation
energy) into the nuclear system.

At low initial excitation energy, for instance T =
5MeV, the time evolution of the average density of
the nucleus Pb oscillates around the normal nuclear
matter density pg, as shown by the curve 1 of Fig.1,
in which the average density is defined as
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where p(r,t) is a density. The curve 1 indicates that
at this initial excitation energy, the nucleus remains
at stable state without expanding and the breakup
does not occur. With increasing the initial excitation
energy, the completely different situation appears, for
example, at T = 13, 14, 20 MeV, the average den-
sities of the nucleus decrease rapidly with time and
at about the time ¢t ~ 80—100fm/c, they fall to the
(0.2-0.4)po, which have been shown in the curves 2,
3 and 4 of Fig.1. From the experimental study,'®
we know that the breakup density is approximately
one-third of the normal nuclear matter density, which
means that the critical density of the nucleus is about
(0.2—0.4)po. Therefore, the sharp decrease in the den-
sity we observed really reflects the process of fragmen-
tation. The low asymptotic constant density shown
by curves 2, 3 and 4 may give evident signals that the
liquid—gas phase transition has happened.

For a system undergoing such a liquid-gas phase
transition, the dynamic evolution is expected to be
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dominated by an exponential growth of the local ini-
tial perturbations. This means that two different tra-
jetories of particles (different events), having a small
initial relative distance in phase space, will soon di-
verge exponentially. From this point of view, the
Lyapunov Exponent appears as an appropriate micro-
scopic observable to study critical phenomenon for a
real nuclear system. In order to calculate the largest
Lyapunov exponent, the following metric in phase
space

n
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is defined.'® Here, 7io; and p;;( subscript j = 1 or 2

for two different events ) are the scaled positions and
momenta
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where 7;; and p,; are the position and momentum
for ¢ particle, respectively, rigy, and p.y. are the root
mean square radius and average momentum. The
sum runs over all the N particles of the nucleus. Nor-
mally, the Lyapunov exponent are calculated only in
the coordinate space. In our case, since high excita-
tion energy may make the phase space explode, we
calculate the metric in the whole phase space. The
Lyapunov exponent A are obtained from the relation

d(t) = d(0)e . (4)
In our numerical calculation of Lyapunov exponent we
create an initially excited nucleus by the method men-
tioned above. We call it one test event. At each tem-
perature T, 50 test events are generated. For each test
event 50 other events are generated, each of them dif-
fering from the test event by the initial d(¢ = 0). The
initial phase distance d(0) for initial systems should
be taken as small as possible. In the present case, it is
less than 10~7. Let the systems evolve in time based
on the QMD model. The exponents are obtained by
averaging over 2500 events. In Fig.2 we plot typi-
cal evolutions of d(t)/d(0) at T = 4, 12, 25 MeV for
nuclei 2°8Pb. We see that the distance of trajectories
increases exponentially with time and can be very well
fitted with a straight line (in a semilogarithmic plot),
whose slope is just the Lyapunov exponent.
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Fxg 1. Time evolution of average density of the nucleus
208Pb at initial temperatures T = 5, 13, 14, 20MeV (
curve 1, 2, 3, 4 ), respectively.
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Fig. 2. Logarithmic ratio d(t)/d(0) as a function of time
at three initial temperatures T = 4, 12, 25MeV for the
nuclear system 2°8Pb. The dashed lines are fitted, whose
slopes give the typical Lyapunov exponents A for each tem-
peratures after averaging over 2500 events.
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Fig. 3. The largest Lyapunov exponent (in unit of 0.01
c/fm) as a function of temperature in the cases with and
without Coulomb term. The dashed lines are fits obtained
with the functional form A = C|T — T.|™%, where w =
0.13 and C is a constant.
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Fig.4. The largest Lyapunov exponent (in unit of 0.01
c/fm) as a function of temperature for nuclear systems of

40Ca, 50Ca and 208Pb.

Based on the concept of Lyapunov exponent we
study the critical phenomenon in expanding process
of the initial excited nuclear systems. In Fig.3 we
plot Lyapunov exponents as a function of tempera-
tures for the nucleus 2°8Pb, where the collision term
is switched off. Two curves are for the mean field
with and without Coulomb interaction, respectively.
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From this figure, we can see that at a low tempera-
ture the Lyapunov exponent is smaller and the sys-
tem still remains at stable. With increasing the initial
temperature the exponential divergency of trajecto-
ries becomes larger and larger, the chaoticity of the
system is getting stronger. At the initial temperature
around 11 MeV for the case with Coulomb term and
around 13 MeV for the case without Coulomb term
the Lyapunov exponent reaches a maximum value,
where the fluctuation of the system becomes largest
and the chaoticity is strongest. This means that at
this temperature the maximum coexistence between
the “liguid” and “gas” appears. This seems to be
considered as a critical point. Above this initial tem-
perature region, the system is gradually dominated
by “gas” (very small fragments or nucleons) and the
Lyapunov exponent becomes smaller. In the phase
of pure “gas” appeared at higher temperatures, the
Lyapunov exponent is getting even smaller. The rea-
son for that is as follows: In a quite high temperature
case the interactions within the “gas” is very weak and
the exponential divergence in the momentum space al-
most disappears. Thus, the Lyapunov exponent will
decrease. This figure demonstrates the dependence of
the Lyapunov exponent on the temperature, which is

similar to the relation A = C|T — T.|™ of the Lan-
dau theory of phase transition. In this figure we have
also shown this critical expression with w & 0.13 and
a constant of C by the dashed lines. Since the system
under our consideration is finite, there is, of course, no
singularity at the critical point. However, the general
trend observed seems to follow the functional form of
Landau theory of phase transition. This suggests that
the Lyapunov exponent may be considered as one of
the good microscopic quantities to describe the critical
phenomenon in nuclei.

Based on this study we expect that the interac-
tions may also give a strong influence on the phase
transition. By comparing the Lyapunov exponents
calculated with and without Coulomb interaction, we
can see that Coulomb force makes the critical tem-
perature lower 2 MeV than that for the case without
Coulomb term in the system 2°8Pb. This general ten-
dency is consistent with the case in infinite systems.
As we know that for the finite system the influence
of the finite size effect of systems on the behavior of
phase transition is of great interest. Here we study
Lyapunov exponents as a function of temperatures for
different systems, for example, *°Ca and 3°Ca and so
on. In Fig. 4 we show those data together with results
of Lyapunov exponents for 2°3Pb. Thses three curves
give similar general behaviors of the phase transition,
but the critical temperatures are different. The gen-
eral tendency is that for the light system the critical
temperatute seems to be lower since vaporization of a
small system needs less energy. Although this seems
to be a trivial conclusion, but for the very finite system
it makes a sense, because the most of studies on the
liquid-gas phase transition are for infinite systems and
are based on the thermodynamic or macroscopic the-
ories. Here we use Lyapunov exponent to measure the
critical phenomenon microscopically. We know that
the phase transition, in generally speaking, is mainly
dependent on the long range interaction. From this
point of view we can expect that the collision term

should not play an important rule for the phase tran-
sition. In Fig.5 we show the calculated Lyapunov ex-
ponents as a function of temperatures for the cases
with and without the collision term. This figure tells
us the collision term seems to be minor important for
our present study on the liquid—gas phase transition
in the expanding process of an excited nucleus.
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Fig.5. The largest Lyapunov exponent (in unit of 0.01
c/fm) as a function of temperature at the two cases with
and without collision term, respectively.

In summary, we tried to search the microscopic
quantity which can be used to describe the phase tran-
sition in real nuclei. The Lyapunov exponent is em-
ployed and examined for our purpose. The prelimi-
nary conclusions are as follows: (1) Lyapunov expo-
nent is a good microscopic quantity to describe the
phase transition in nuclear systems, for example, at
the later stage of heavy ion reactions. (2) Coulomb
potential and the finite size effect may give a strong
influence on the critical temperature of the phase tran-
sition in hot nuclei. Coulomb force makes the critical
temperature lower and increasing the size of systems
may enhance the critical temperature. (3) The col-
lision term plays a minor role in the process of the
liquid—gas phase transition in finite systems. Finally
we would like to mention that there is a considerable
difference about the phase transition in the finite and
infinite systems. The further study is in progress.
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