

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Systematic study of fusion barriers with energy dependent barrier radius

Yeruoxi Chen^a, Hong Yao^{a,b}, Min Liu^{a,c}, Junlong Tian^{a,c}, Peiwei Wen^d, Ning Wang^{a,c,*}

^a Department of Physics, Guangxi Normal University, Guilin 541004, PR China

^b School of Physics, Beihang University, Beijing 102206, PR China

^c Guangxi Key Laboratory of Nuclear Physics and Technology, Guilin 541004, PR China

^d China Institute of Atomic Energy, Beijing 102413, PR China

ARTICLE INFO

Article history: Received 7 April 2023 Received in revised form 9 May 2023 Accepted 11 May 2023 Available online 31 May 2023

Dataset link: http://www.imgmd.com/fusio n/MSW_barrier.txt

Keywords: Fusion cross section Coulomb barrier Barrier parameters de Broglie wavelength

ABSTRACT

Considering energy dependence of the barrier radius in heavy-ion fusion reactions, a modified Siwek-Wilczyński (MSW) fusion cross section formula is proposed. With the MSW formula, the fusion barrier parameters for 367 reaction systems are systematically extracted, based on 443 datasets of measured cross sections. We find that the fusion excitation functions for about 60% reaction systems can be better described by introducing the energy dependence of the barrier radius which is due to the dynamical effects at energies near and below the barrier. Considering both the influence of the geometry radii and that of the reduced de Broglie wavelength of the colliding nuclei, the barrier heights are well reproduced with only one model parameter. The extracted barrier radius parameters linearly decrease with the effective fissility parameter, and the width of the barrier distribution relates to the barrier height, as well as the reduced de Broglie wavelength at energies around the Coulomb barrier.

© 2023 Elsevier Inc. All rights reserved.

Atomic Data ır Data Tab

^{*} Corresponding author at: Department of Physics, Guangxi Normal University, Guilin 541004, PR China.

E-mail address: wangning@gxnu.edu.cn (N. Wang).

Contents

1.	Introduction	. 2
2.	Energy dependence of barrier radius	. 3
3.	Modified Siwek-Wilczyński formula and some tests	. 3
4.	Extracted barrier parameters	. 5
5.	Summary	. 8
	Declaration of competing interest	. 15
	Data availability	. 15
	Acknowledgments	. 15
	Appendix	. 15
	References	. 15

1. Introduction

The problem of overcoming a potential barrier is of importance not only in nuclear physics, but also in many other fields of the nature sciences. Knowledge of the nucleus–nucleus interaction potential is an essential ingredient in the analysis of elastic and inelastic scattering, as well as of fusion reactions between nuclei. The information concerning the potential barrier is of crucial importance for the synthesis of super-heavy nuclei and heavy-ion fusion at deep sub-barrier energies which has attracted a great deal of attention in recent years [1–10]. Up to now, the fusion cross sections for more than a thousand of reaction systems have been measured in the past several decades. A systematic study of the fusion barriers based on these data is therefore interesting and necessary.

Classically a particle can only overcome a potential barrier when its total energy exceeds the barrier height. In the classical description of fusion excitation functions, the fusion cross section $\sigma_{\text{fus}}(E)$ at a center-of-mass incident energy *E* is given by

$$\sigma_{\rm fus}(E) = \pi R_B^2 (1 - V_B/E),\tag{1}$$

where R_B is the barrier radius and V_B is the barrier height. The barrier parameters are obtained from the data by fitting a straight line through a plot of σ_{fus} vs 1/E. The slope and intercept of this line with the 1/E axis lead to the barrier radius and height, respectively. At energies below the barrier, the particle may tunnel through the potential barrier, as a consequence of quantum mechanics. This tunneling effect was first recognized in the 1920's and the α -decay of nuclei was explained as a tunneling effect [11]. In the 1970's, the fusion cross sections are analytically described by the well known Wong formula [12], based on the assumption of a parabolic barrier together with the barrier penetration concept,

$$\sigma_{\rm fus}(E) = \frac{\hbar\omega}{2E} R_B^2 \ln\{1 + \exp[2\pi(E - V_B)/\hbar\omega]\},\tag{2}$$

where, $\hbar\omega$ is the s-wave barrier curvature. The energy dependence of the barrier curvature is introduced in Ref. [13] for a better description of the fusion cross sections at deeply subbarrier energies. For relatively large values of *E*, the result of Wong formula reduces to the classical formula Eq. (1).

For the sub-barrier fusion reactions leading to heavy compound nuclei, an important observation is that the measured fusion cross sections exhibit strong enhancements compared to estimations using a simple one-dimensional barrier penetration model [8]. These enhancements have been accounted for in terms of strong couplings between the relative motion of colliding nuclei and the intrinsic degrees of freedom, such as the collective vibrations of nuclei and nucleon transfer in the neck region. To consider the coupling effects, Stelson introduced a distribution of barrier heights D(B) in the calculation of the fusion excitation function around 1990 [14,15],

$$\sigma_{\rm fus}(E) = \int D(B)\sigma_{\rm fus}^{(1)}(E,B)dB,\tag{3}$$

with $\int D(B)dB = 1$. Here, $\sigma_{\text{fus}}^{(1)}(E, B)$ is the fusion cross section based on a single barrier with a height *B*.

To describe D(B), a single-Gaussian distribution of barrier heights predicted from different orientations of colliding nuclei undergoing slow deviations from sphericity is used by Siwek-Wilczyńska and Wilczyński (SW). Together with Eq. (1) for describing $\sigma_{\text{fus}}^{(1)}(E, B)$, the SW formula was proposed [16]. With the SW formula, the heavy-ion fusion cross sections for 29 systems, from ${}^{16}O+{}^{18}O$ to ${}^{64}Ni+{}^{124}Sn$, at extreme sub-barrier energies have been analyzed [17]. Very recently, Wen et al. applied the SW formula to systematically extract the barrier information from the experimental fusion excitation functions, and found that the SW formula behaves much better for the barrier fitting than the Wong formula [18]. In addition to the single-Gaussian function for describing *D*(*B*), two-Gaussian function [19,20], asymmetric Gaussian function [21,22] and as well as multi-Gaussian function [23,24] are also frequently used. The experimental barrier height distribution D(E) can be extracted from a precise experiment of the fusion excitation function via the second derivative [25,26]:

$$D(E) = \frac{1}{\pi R_B^2} \frac{d^2 (E\sigma_{\rm fus})}{dE^2}.$$
 (4)

The validity of all these analyses mentioned above requires that all *l* waves contributing to the fusion cross section have the same barrier radius R_B , a condition which is probably not fulfilled for most reactions [27]. The energy dependence of the nucleus-nucleus potential was clearly observed from some microscopic dynamics calculations, such as the simulations based on the time-dependent Hartree–Fock (TDHF) theory [28,29] and the improved quantum molecular dynamic (ImQMD) model [30,31], due to the strong dynamical effects in fusion process. For fusion reactions with deformed nuclei, the orientation of the colliding nuclei significantly influences not only the barrier height but also the barrier radius. For tip-tip configuration in fusion reaction induced by prolate nuclei, one obtains a larger barrier radius, comparing with that for side-side configuration [29,32]. It is therefore necessary to investigate the influence of energy and orientation dependence of the barrier radius on the fusion cross sections.

The purpose of the present work is to systematically extract the fusion barriers based on the SW formula together with the energy dependence of the barrier radius being considered. The structure of this paper is as follows: In Section 2, energy dependence of the barrier radius for $^{16}O+^{208}Pb$ and $^{34}S+^{168}Er$ will be investigated. In Section 3, a modified SW formula will be proposed and the model accuracy for describing some fusion

Fig. 1. Barrier radius as a function of E/V_B for ${}^{16}\text{O}+{}^{208}\text{Pb}$ (a) and ${}^{34}\text{S}+{}^{168}\text{Er}$ (b) from the TDHF calculations. A_1 and A_2 denote the mass number of projectile and target nuclei, respectively. V_B in horizontal axis are taken from a linear fit of the measured σ_{fus} [33,34] vs 1/*E* in the region larger than 100 mb.

excitation functions will be tested. In Section 4, the information concerning fusion barriers extracted from 443 datasets of experimental data for 367 different projectile–target combinations, will be presented and the systematics of the fusion barrier will also be analyzed. Finally, a summary will be given in Section 5.

2. Energy dependence of barrier radius

To investigate the energy dependence of barrier radius, we firstly use the time dependent Hartree–Fock (TDHF) theory for simulating the fusion reactions ¹⁶O+²⁰⁸Pb and ³⁴S+¹⁶⁸Er. The nucleus–nucleus interaction potential is extracted by using the density-constrained TDHF approach [32,35]. In ³⁴S+¹⁶⁸Er, the tip–tip and tip–side orientations for the deformed reaction partners are taken into account. The Skyrme SLy4d interactions [26] are used by static HF and TDHF dynamic evolution, in which the numerical boxes are chosen as $30 \times 30 \times 30$ fm³ and $30 \times 30 \times 50$ fm³, respectively. The time propagation is carried out using a Taylor-series expansion up to the sixth order of the unitary mean-field propagator with a time step of 0.2 fm/c, and the initial distance of two nuclei is set to 20 fm.

In Fig. 1, we show the calculated barrier radii at different incident energies for ¹⁶O+²⁰⁸Pb and ³⁴S+¹⁶⁸Er, which are scaled by $A_1^{1/3} + A_2^{1/3}$ to see the radius parameter. One can see that for both reactions at energies around the barrier height V_B , the barrier radius decrease evidently with incident energy. Especially for ³⁴S+¹⁶⁸Er at tip-side orientation, the radius parameter falls sharply with energy, from 1.4 fm at $E \approx V_B$ down to 1.1 fm at $E \approx 1.3V_B$. At energies much higher than the barrier height, the barrier radius does not change too much. The energy dependence of the barrier radius is due to the dynamical effects in fusion process. At energies around the barrier height, the fusion process is relatively slow and the reaction partners have enough time to readjust nuclear density distributions of the reaction system. The dynamical deformation of the densities and neutron transfer in the neck region can result in the enlargement of the barrier radius and the reduction of barrier height correspondingly.

In addition to the TDHF calculations, the barrier radius is also analyzed based on the measured fusion excitation function. According to Eq. (1), the barrier radius can be expressed as,

$$R_B(E) = \left[\frac{\sigma_{\rm fus}}{\pi (1 - V_B/E)}\right]^{1/2}.$$
(5)

In Fig. 2, we show the extracted barrier radius for ${}^{16}\text{O}+{}^{208}\text{Pb}$ and ${}^{34}\text{S}+{}^{168}\text{Er}$, based on the measured fusion excitation function σ_{fus} [33,34]. At energies above the fusion barrier, the barrier radius does not change significantly with incident energy. At

sub-barrier energies, the enhancement of the barrier radius can be clearly observed. In Ref. [36], a generalized Wong formula is proposed by Rowley and Hagino through considering energy dependence of the barrier parameters. The trend of the energy dependence for barrier radius observed in Fig. 2 is generally in agreement with those from the TDHF calculations and the generalized Wong formula.

Both the TDHF calculations and the data analysis imply that the assumption used in the traditional formula, i.e., all l waves contributing to the fusion cross section having the same barrier radius R_B , is generally valid at energies above the barrier height. However, at energies around the barrier, the enhancement of barrier radius due to dynamical effects should be considered for a better description of the fusion excitation functions. To consider the influence of the dynamical effects on barrier radius, we empirically introduce a correction term to the traditional barrier radius R_0 ,

$$R_B(X) = R_0 + \Delta R \exp(-X) \operatorname{erfc}(X).$$
(6)

The definition of *X* and the determination of the correction factor ΔR will be discussed later. The solid curves in Fig. 2 denote the results according to Eq. (6). Comparing with the results of SW formula, the trend of energy dependence for the barrier radius can be much better described by using Eq. (6), especially at sub-barrier energies.

3. Modified Siwek-Wilczyński formula and some tests

Considering the energy dependence of the barrier radius given by Eq. (6), we propose a modified Siwek-Wilczyński (MSW) formula for describing the fusion excitation function

$$\sigma_{\rm fus}(E) = \pi R_B^2(X) \frac{W}{\sqrt{2E}} [X \operatorname{erfc}(-X) + \frac{1}{\sqrt{\pi}} \exp(-X^2)],$$
(7)

where $X = \frac{E-V_B}{\sqrt{2W}}$. V_B and W denote the centroid and the standard deviation of the Gaussian function, respectively. Together with the traditional barrier radius R_0 and the correction factor ΔR in Eq. (6), there are a total of four barrier parameters in the MSW formula. If $\Delta R = 0$, the result of Eq. (7) reduces to the standard SW formula [16]. For a certain fusion reaction, the four parameters in the MSW formula can be determined by fitting the measured fusion excitation function. The popular Minuit minimization program [39] is usually applied to determine the fitting parameters by searching the global minimum in the hypersurface of the χ^2 function. The χ^2 per energy point is expressed as

$$\chi_{pt}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\sigma_{\text{th}} \left(E_{i} \right) - \sigma_{\exp} \left(E_{i} \right)}{\delta \sigma_{\exp} \left(E_{i} \right)} \right]^{2}, \tag{8}$$

Fig. 2. Barrier radius for ${}^{16}O+{}^{208}Pb$ (a) and ${}^{34}S+{}^{168}Er$ (b) from the measured fusion excitation functions. The circles denote the extracted results from the data by using Eq. (5). The dashed lines denote the results of SW formula. The solid curves denote the results of Eq. (6).

Fig. 3. (Color online) Fusion excitation functions and fusion barrier distributions for ${}^{32}S+{}^{96}Zr$ and ${}^{36}S+{}^{110}Pd$. The squares in (a1) and (b1) denote the experimental data taken from [37,38] for ${}^{32}S+{}^{96}Zr$ and ${}^{36}S+{}^{110}Er$, respectively. The squares in (a2) and (b2) denote the extracted barrier distribution according to Eq. (4). The dash-dotted curve and the solid curve denote the results of SW formula and those of MSW formula, respectively.

in which the uncertainty of fusion cross section is involved in the fitting process. In addition to χ^2_{pt} , the mean-square deviation between the measured fusion cross sections and model predictions is also frequently used to determine the best-fit model parameters [22,23]. Here, the mean-square deviation in logarithmic scale is defined as,

$$\chi_{\log}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left[\log \left(\sigma_{\text{th}} \left(E_{i} \right) \right) - \log \left(\sigma_{\exp} \left(E_{i} \right) \right) \right]^{2}.$$
(9)

 χ^2_{log} is more effective to check the trend of fusion cross sections at sub-barrier energies. In this work, we combine these two

quantities and use $\bar{\chi} = (\chi_{pt}^2 + \chi_{\log}^2)^{1/2}$ to search for the best-fit parameters.

Figs. 3 and 4 show the fusion excitation functions and barrier distributions for ³²S+⁹⁶Zr, ³⁶S+¹¹⁰Pd, ⁵⁸Ni+⁵⁴Fe and ⁵⁸Ni+⁶⁰Ni reactions. We note that introducing the energy dependence of barrier radius, the experimental data can be much better reproduced, especially for the fusion cross sections at deep sub-barrier energies. With the MSW formula, both χ^2_{pt} and χ^2_{log} are significantly smaller than those with the SW formula. In addition, the barrier distributions are also studied to check the details in reproducing the fusion excitation functions. The distributions are extracted from the experimental excitation functions using the point-difference

Fig. 4. (Color online) The same as Fig. 3, but for ${}^{58}Ni+{}^{54}Fe$ and ${}^{58}Ni+{}^{60}Ni$. *Source:* The experimental data are taken from [40,41].

approximation [26] according to Eq. (4),

$$\frac{d^2 (E\sigma_{\rm fus})}{dE^2} \approx \frac{2E\sigma_{\rm fus}(E) - E\sigma_{\rm fus}(E + \Delta E) - E\sigma_{\rm fus}(E - \Delta E)}{(\Delta E)^2}, \quad (10)$$

with an energy step $\Delta E = 2.5$ MeV. From (a2) and (b2) in Figs. 3 and 4, one can see that with energy dependence of R_B , the left shoulders in the barrier distributions for these four systems can be evidently observed in the MSW calculations, although the single-Gaussian function is adopted in Eq. (3).

4. Extracted barrier parameters

Up to now, a large number of fusion excitation functions have been measured in the past several decades. Most of data for the fusion cross sections including fusion-fission and evaporation residue obtained from the tables or the graphs of the corresponding publications, are collected in the NRV website [42]. In this work, we use a similar procedure as adopted in Ref. [18] to select the experimental fusion data. In addition to the data in the NRV website, some fusion excitation functions measured in very recent vears are also collected in this work. One usually defines the fusion cross section $\sigma_{\rm fus}$ as a sum of evaporation residue cross section σ_{EvR} and fission cross section σ_{FF} . For light and intermediate mass systems, it is thought that $\sigma_{\rm fus} \simeq \sigma_{\rm EvR}$, since the fission barrier of the compound nuclei is high enough and the fission cross sections could be negligible. For heavy systems, e.g. the reactions leading to lanthanides or heavier nuclei, the contribution of fission cannot be ignored, the fission cross sections need to be included in σ_{fus} . For fusion reactions leading to actinides, the evaporation residue cross sections are relatively small and the fission cross sections play a dominant role in the extraction of the fusion barrier. For fusion reactions leading to super-heavy

nuclei, the evaporation residues become negligible and the quasifission cross sections are dominant in the total capture cross sections with which the Coulomb barrier can be extracted. For some systems with the same projectile-target combination, the data from different experimental groups are slightly different and the fusion barrier is separately analyzed and presented in this work.

Firstly, we analyze the 29 fusion reaction systems mentioned in Ref. [17], where Jiang et al. systematically analyzed the fusion cross sections for the 29 systems by using the SW formula. In Fig. 5, we compare the results from the SW formula and those from the MSW formula proposed in this work. From Fig. 5(a), one notes that for most of reactions, the χ^2_{pt} values with the MSW formula are much smaller than those with SW formula, since one more parameter ΔR is involved. For the lightest system ¹⁶O+¹⁸O, the obtained barrier parameters from the two formulas are very close to each other, although the obtained χ^2_{pt} in this work is larger than that in Ref. [17]. The obtained barrier heights from the two formulas are in good agreement with each other. The discrepancies in *W* and R_0 are within 25%, which indicates that the introduction of the correction factor ΔR in the MSW formula influences *W* and R_0 relatively larger than V_B .

Then, we systematically analyze a total of 443 datasets of measured fusion (and/or fission) cross sections for 367 different projectile-target combinations by using the MSW formula. The values of $\bar{\chi}$ corresponding to the best-fit parameters for all considered systems are simultaneously obtained. In Fig. 6, we show the distribution for the relative deviation of $\bar{\chi}$ between the results of MSW and those of SW, i.e., $(\bar{\chi}^{SW} - \bar{\chi}^{MSW})/\bar{\chi}^{SW}$. We find that for 173 datasets, the relative deviation $\Delta \bar{\chi}/\bar{\chi}$ is smaller than 0.1%. For 122 datasets, the improvement is larger than 10% and for 148 datasets the values of $\Delta \bar{\chi}/\bar{\chi}$ are located in the region of 0.1%–10%. It indicates that the measured fusion excitation

Fig. 5. (Color online) Ratios between the extracted barrier parameters in this work and those in Ref. [17]. χ_g^2 , V_g , W_g and R_g denote the obtained χ_{pt}^2 , the barrier height, the standard deviation and the barrier radius in Ref. [17], respectively.

Fig. 6. (Color online) Distribution of the relative improvement in $\bar{\chi}$ by using MSW comparing with SW.

functions for about 60% reactions can be better reproduced by introducing the energy dependence of barrier radius into the SW formula. The extracted barrier parameters and the references for these systems are listed in Table A.

For studying the fusion of heavy nuclei, one usually introduces a parameter to describe the fissility of the reaction system. The effective fissility parameter is defined as,

$$x_{\rm eff} = \frac{(Z^2/A)_{\rm eff}}{(Z^2/A)_{\rm thr}},$$
(11)

with the effective fissility

$$(Z^2/A)_{\rm eff} = \frac{4Z_1Z_2}{A_1^{1/3}A_2^{1/3}(A_1^{1/3} + A_2^{1/3})}$$
(12)

and the threshold [43] for the effective fissility $(Z^2/A)_{\text{thr}} \approx 33$, beyond which an extra push is needed to achieve fusion. Z_1 and Z_2 in Eq. (12) denote the charge numbers of the projectile and target nuclei, respectively.

Based on the extracted barrier height V_B , the radius of the corresponding Coulomb potential $R_{\text{Coul}} = Z_1 Z_2 e^2 / V_B$ is systematically analyzed. In Fig. 7(a), we show the extracted radius parameter R_{Coul} . The decreasing trend of the radius parameter $R_{\text{Coul}}/(A_1^{1/3} + A_2^{1/3})$ with the effective fissility parameter x_{eff} can be evidently observed. To understand the physics behind, we also show in Fig. 7(b) the reduced de Broglie wavelength $\lambda_B = \hbar/\sqrt{2\mu V_B}$ of the colliding nuclei at an incident energy of $E = V_B$. μ is the reduced mass of the reaction system. One can see that λ_B approaches to zero with the increase of x_{eff} , which indicates that the influence of

Fig. 7. (Color online) (a) Extracted radius parameter for the Coulomb potential as a function of the effective fissility parameter x_{eff} . The open circles and the crosses denote the data based on the extracted barrier heights and the calculated results by using Eq. (13), respectively. (b) Reduced de Broglie wavelength λ_B of the colliding nuclei at an incident energy of $E = V_B$.

de Broglie wavelength is negligible for heavy fusion systems. It is known that the capture cross section $\sigma_{cap} \propto \pi (R+\lambda)^2$ considering the wave properties of incident particles. For heavy fusion system λ is very small and consequently one obtains the traditional geometry cross section $\propto \pi R^2$. For very light fusion systems (with smaller values of x_{eff}) and thermal neutron induced capture cross sections, the contribution of λ needs to be considered.

To describe the radius of the Coulomb potential R_{Coul} , we consider both the influence of the geometry radii of nuclei and that of the wave properties of particles. We write R_{Coul} as a sum of the charge radii of projectile and target nuclei, a parameter d = 1.75 fm which is related to the interaction range, and as well as the reduced de Broglie wavelength,

$$R_{\text{Coul}} = R_1^{\mathsf{C}} + R_2^{\mathsf{C}} + 1.75 + \lambda_B. \tag{13}$$

The charge radius $R^C \simeq \sqrt{\frac{5}{3}}r_{ch}$ of a nucleus neglecting its deformations is taken from the root-mean-square (rms) charge radius r_{ch} which can be measured with high precision [44–46]. In the calculations, the reduced de Broglie wavelength $\lambda_B = \hbar/\sqrt{2\mu V_B}$ can be obtained by using an iterative procedure with an initial value of $V_B \approx Z_1 Z_2 e^2/(R_1^C + R_2^C + 1.75)$. The calculated results of R_{Coul} are also shown in Fig. 7(a) for comparison. One sees that the extracted radius parameter can be well reproduced. It indicates that the decreasing trend of the barrier radius parameter could have a relationship with the de Broglie wavelength of the colliding nuclei. With only one parameter in Eq. (13), the extracted barrier heights can be well reproduced by using

$$V_B = Z_1 Z_2 e^2 / R_{\text{Coul}},\tag{14}$$

with an rms deviation of only 1.52 MeV for all considered reactions. The relative deviation $\Delta V_B = (V_B^{exp} - V_B^{th})/V_B^{exp}$ between data and model predictions is also calculated, the corresponding rms error is 2.83% with Eq. (14) for calculating V_B^{th} , which is much smaller than the corresponding value of 4.29% from the threeparameter WKJ formula in Ref. [47] and slightly smaller than that of 2.84% from the two-parameter MCW formula in Ref. [18]. The systematics of the extracted barrier radius R_0 and that of the standard deviation of the Gaussian function W are investigated simultaneously. In Fig. 8, we show the extracted barrier radius parameters $R_0/(A_1^{1/3} + A_2^{1/3})$ and the value W/V_B as functions of the effective fissility parameter x_{eff} . We note that the extracted barrier radius parameter linearly decreases with the effective fissility parameter, and the decreasing trend of W/V_B is very similar to that of λ_B in Fig. 7(b). We therefore propose two formulas,

$$R_0 = (1.62 - 0.57x_{\rm eff})(A_1^{1/3} + A_2^{1/3})$$
(15)

and

$$W = (0.014 + 0.135\lambda_B)V_B, \tag{16}$$

for describing R_0 and W, respectively. The similar trends for the barrier radius and the distribution width are also observed in Ref. [17]. In addition to the influence of wave properties of reaction partners, the systematic decreasing trend of the barrier radius R_0 could also be due to the influence of quasi-fission of reaction systems, since the quasi-fission cross sections are not involved in the present analysis. The contribution of quasi-fission to the total capture cross sections may increase with x_{eff} . It is thought that the influence of quasi-fission becomes evident and an extra push is needed to achieve fusion for the systems with $x_{\text{eff}} > 1$ [43,48]. The systematics of the correction factor ΔR is unclear at the moment. The shell effects of reaction systems and the change of Q value due to nucleon transfer should be further investigated to explore the systematics of ΔR .

For fusion reactions with $\Delta R = 0$ listed in Table A, we systematically analyze the experimental data. Simultaneously, the fusion cross sections for these systems are also calculated for comparison by using the SW formula with Eqs. (14)–(16) for calculating V_B , R_0 and W. In Fig. 9, the measured cross sections scaled by πR_0^2 are shown as a function of X. We note that the cross sections for different reactions have a quite similar trend at sub-barrier and over-barrier energies. The experimental data can be reasonably well reproduced by the SW formula together with the proposed barrier parameter formulas.

Fig. 8. (Color online) (a) Extracted barrier radius parameters as a function of the effective fissility parameter x_{eff} . The line denotes a linear fit to the extracted results. (b) Standard deviation of the Gaussian function *W* divided by the corresponding barrier height V_B as a function of x_{eff} . The circles denote the extracted results and the squares denote the predictions with Eq. (16).

Fig. 9. (Color online) Measured cross sections for reactions with $\Delta R = 0$ as a function of $X = \frac{E - V_B}{\sqrt{2W}}$. Here, the cross sections are scaled by πR_0^2 . Eqs. (14)-(16) are used in the calculations of V_B , R_0 and W, respectively. Squares denote the model predictions from the SW formula.

5. Summary

A total of 443 datasets of measured fusion (and/or fission) excitation functions for 367 different projectile–target combinations, are systematically analyzed by using a new fusion cross section formula, in which the energy-dependent barrier radius R_B is introduced into the Siwek–Wilczyński formula. We find that the fusion excitation functions for about 60% reaction systems can be better described by considering the energy dependence of R_B . The energy dependence of barrier radius can also be clearly observed from the time-dependent Hartree–Fock (TDHF) calculations, which is due to the dynamical effects at energies around

the Coulomb barrier. With the energy dependence of R_B , the barrier distributions based on the double-differentiation process can be better reproduced for some systems, especially the left shoulder in the distribution. Considering both the influence of the geometry radii and that of the wave properties of the colliding nuclei, the barrier height V_B can be well reproduced with only one model parameter. We also note that the extracted barrier radius parameters linearly decrease with the effective fissility parameter, from about 1.6 fm for very light reaction systems to about 1.0 fm for heavy systems in which quasi-fission could occur. It seems that the width of the barrier distribution relates to the barrier height, as well as the reduced de Broglie wavelength of the colliding nuclei at energies around the Coulomb barrier.

Table A

Extracted barrier parameters based on 443 datasets of measured cross sections together with the MSW formula. V_B and W denote the centroid and the standard deviation of the Gaussian function for barrier distribution, respectively. R_0 denotes the traditional barrier radius. ΔR denotes the correction factor for the barrier radius. χ^2_{pt} denotes the χ^2 per energy point, and χ^2_{log} denotes the mean-square deviation between data and predictions in logarithmic scale. EvR and FF are cross sections for fusion–evaporation residues and fusion–fission, respectively.

Reaction	V_B (MeV)	W (MeV)	R_0 (fm)	ΔR (fm)	χ^2_{pt}	$\chi^2_{log}(\times 100)$	Туре	Ref.
⁴ He+ ⁹³ Nb	11.74	1.00	9.38	0.350	0.609	0.666	EvR	[49]
⁴ He+ ¹⁵⁴ Sm	15.29	0.39	9.77	3.744	0.393	0.398	EvR	[50]
⁴ He+ ²³³ U	22.63	1.67	11.83	0.244	5.418	14.639	FF	[51]
⁴ He+ ²³⁵ U	23.28	2.06	10.49	0.003	0.041	0.042	FF	[52]
⁴ He+ ²³⁶ U	22.25	1.59	10.55	0	0.169	0.124	FF	[53]
⁴ He+ ²³⁸ U	22.90	1.67	12.57	0.242	4.341	9.856	FF	[51]
⁴ He+ ²³⁸ U	23.00	2.02	10.04	0.001	0.024	0.024	FF	[54]
⁴ He+ ²³⁷ Np	21.12	0.64	9.39	2.391	0.810	0.877	EvR+FF	[55]
⁶ He+ ⁶⁴ Zn	9.86	2.06	8.14	0	0.015	0.083	EvR	56
⁶ He+ ²⁰⁹ Bi	19.57	2.23	9.67	0	0.496	0.457	EvR	[57]
⁸ He+ ¹⁹⁷ Au	19.61	1.95	11.41	0	0.196	0.331	EvR	58
⁶ Li+ ⁶⁴ Ni	11.82	1.24	8.57	0	0.089	0.165	EvR	[59]
⁶ Li+ ⁶⁴ Zn	12.68	1.63	8.75	0.161	0.392	1.802	EvR	[60]
⁶ Li+ ⁹⁰ Zr	17.45	1.05	8.17	2.478	1.351	1.180	EvR	[61]
⁶ Li+ ¹⁴⁴ Sm	25.02	1.66	7.70	0.145	0.931	4.811	EvR	[62]
⁶ Li+ ¹⁵² Sm	24.47	1.95	8.26	0	0.890	0.301	EvR	[63]
⁶ Li+ ¹⁵⁹ Tb	24.27	2.01	8.08	0.189	0.433	0.353	EvR	[64]
⁶ Li+ ¹⁹⁸ Pt	28.69	1.82	8.45	0.192	0.426	2.926	EvR	[65]
⁶ Li+ ¹⁹⁷ Au	27.79	1.54	7.51	0	0.557	1.470	EvR	66
⁶ Li+ ²⁰⁹ Bi	29.87	1.84	8.71	0.104	0.168	0.451	EvR+FF	[67]
⁶ Li+ ²³² Th	31.61	2.76	11.28	0.156	0.206	0.532	FF	[68]
⁶ Li+ ²³⁸ U	30.93	2.62	10.33	0.081	0.685	1.760	FF	[68]
⁷ Li+ ¹⁶ O	4.31	0.89	8.99	0.029	0.677	0.669	EvR	[69]
⁷ Li+ ²⁸ Si	6.98	0.78	7.79	0	0.596	0.646	EvR	70
⁷ Li+ ⁵⁹ Co	11.77	1.40	7.86	0	0.271	0.268	EvR	[71]
⁷ Li+ ⁶⁴ Zn	12.60	1.26	9.09	0.181	0.644	4.213	EvR	[60]
⁷ Li+ ¹⁴⁴ Sm	24.66	1.33	8.55	1.123	0.308	0.115	EvR	[72]
⁷ Li+ ¹⁵² Sm	24.23	1.96	8.61	0	1.176	0.555	EvR	[72]
⁷ Li+ ¹⁵⁹ Tb	23.06	1.51	10.31	0.280	1.044	4.231	EvR	[73]
⁷ Li+ ¹⁹⁸ Pt	28.06	1.66	9.52	0	0.108	0.363	EvR	[74]
⁷ Li+ ¹⁹⁷ Au	28.79	1.80	10.32	0	0.019	0.044	EvR	[66]
⁷ Li+ ²⁰⁹ Bi	29.69	1.69	9.86	0.149	0.302	1.279	EvR+FF	[75]
⁷ Li+ ²⁰⁹ Bi	29.53	1.67	9.58	0.188	0.056	0.072	EvR+FF	[67]
⁷ Li+ ²³² Th	31.12	2.12	11.00	0.120	0.366	6.620	FF	[68]
⁷ Li+ ²³⁵ U	31.59	2.13	12.23	0.337	0.354	0.136	FF	[76]
⁷ Li+ ²³⁸ U	31.20	2.12	11.02	0.138	2.202	6.573	FF	[68]
⁷ Be+ ⁵⁸ Ni	16.27	2.07	9.33	0	0.005	0.040	EvR	[77]
⁷ Be+ ²³⁸ U	43.15	1.72	9.51	0.409	0.305	28.512	FF	[78]
⁹ Be+ ⁸⁹ Y	21.00	1.25	8.34	0.111	3.127	1.782	EvR	[49]
⁹ Be+ ¹²⁴ Sn	26.05	2.10	8.88	0	1.148	0.152	EvR	[79]
⁹ Be+ ¹⁴⁴ Sm	31.45	1.56	10.03	0	0.145	0.711	EvR	[<mark>80</mark>]
⁹ Be+ ¹⁶⁹ Tm	34.71	1.18	9.87	2.380	0.777	0.490	EvR	[81]
⁹ Be+ ¹⁸¹ Ta	35.95	2.01	9.09	0.466	0.471	0.193	EvR	[82]
⁹ Be+ ¹⁸⁷ Re	37.01	2.08	9.92	0	0.346	0.439	EvR	[81]
⁹ Be+ ²⁰⁸ Pb	38.32	1.77	9.31	0	1.146	0.803	EvR+FF	[83]
⁹ Be+ ²⁰⁹ Bi	38.14	1.58	9.82	0.050	0.179	0.175	EvR	[84]
⁹ Be+ ²⁰⁹ Bi	38.15	1.56	10.01	0.107	0.199	0.466	EvR	[85]
⁹ Be+ ²⁰⁹ Bi	37.66	0.91	9.02	2.011	0.045	0.037	EvR	[86]
¹⁰ B+ ¹⁵⁹ Tb	39.23	1.15	9.46	3.048	0.071	0.172	EvR	[87]
¹¹ B+ ¹³ C	4.94	0.52	7.98	0.895	0.182	0.460	EvR	[88]
¹¹ B+ ¹⁵⁹ Tb	39.41	2.20	10.31	0	0.039	0.171	EvR	[87]
¹¹ B+ ²³⁸ U	49.66	1.64	11.34	0.333	0.181	0.719	FF	[89]
¹¹ B+ ²³⁷ Np	54.84	2.79	11.80	0	0.312	1.132	FF	[89]
¹² C+ ⁹ Be	3.86	0.63	7.12	0	0.237	1.023	EvR	[90]
¹² C+ ¹¹ B	4.79	0.50	5.45	0.657	0.303	0.752	EvR	[91]
¹² C+ ¹¹ B	4.88	0.50	6.30	0.880	1.386	0.920	EvR	[92]
¹² C+ ¹³ C	5.63	0.52	6.82	0.558	0.495	0.688	EvR	[92]
$^{12}C+^{14}C$	5.49	0.39	6.24	0	0.002	0.006	EvR	93
¹² C+ ¹⁴ N	6.90	0.64	7.64	0.646	0.424	0.424	EvR	[92]
¹² C+ ²⁰ Ne	9.80	0.88	7.66	0.170	1.405	1.692	EVR	[94]
¹² C+ ⁴⁰ Ti ¹² a ⁴⁸ Ti	21.31	1.58	9.82	0.118	0.222	0.911	EVR	[95]
¹² C+ ⁴⁰ Ti	20.40	1.53	8.29	0	0.486	0.728	EVR	[95]
¹² C+ ³⁰ Ti	19.72	1.20	8.12	0.296	0.167	0.409	EVR	[95]
¹² C+ ⁰⁹ Y	32.17	1.50	10.50	0.202	0.256	0.830	EVR	[49]
¹² C+ ³² Zr	31.82	1.25	9.13	U 0.107	3.264	13.703	EVK	[96]
¹² C+ ¹³ Sm	46.83	1.54	11.63	0.127	0.501	1.100	EVK	[97]
12 c+ 154 c	4/.22	2.09	11.20	2.101	0.043	0.024	EVK	[73]
¹² C+ ¹³ Sm	44.54	0.84	9.40	1.831	U.144	0.302	EVK	[50]
"C+"" la	52.43	2.07	10.66	U	0.211	0.216	EVK	[98]

Table A (continued).

Table A (continued	1).							
¹² C+ ¹⁹⁴ Pt	54 91	1 5 2	10 34	0 127	1 1 1 5	0 363	FvR+FF	[99]
12 C + 198 D+	55.37	1.52	10.54	0.127	2.152	0.000	EVIC II	[00]
12 PC	55.27	1.55	10.62	0.101	2.152	0.222	EVK+FF	[99]
¹² C+ ²⁰⁴ Pb	55.99	1.04	11.23	0.190	0.482	2.494	EvR+FF	[100]
$^{12}C + ^{208}Ph$	56 34	126	10 59	0	1 329	0.091	FvR+FF	[101]
12 C + 237 Nm	62.00	2.50	10.55	0	0.220	1.050	EVIC	[00]
C+Np	62.96	2.52	10.51	0	0.326	1.852	FF	[89]
¹³ C+ ¹⁰ B	4.94	0.63	7.67	0	0.124	0.190	EvR	[88]
$^{13}C + ^{11}B$	5.02	0 54	8 44	0.864	0 200	0.212	FvR	1881
13 C + 13 C	5.02	0.51	0.00	0.001	24.250	0.212	Evit.	[102]
······································	5.98	0.64	8.08	0.335	34.259	0.956	EVK	[102]
¹³ C+ ⁴⁸ Ti	20.50	2.45	8.64	0	0.074	0.190	EvR	[103]
$^{13}C + ^{232}Th$	61.68	2 20	12 75	2 002	0 198	0.036	FF	104
14 10 0	5 70	2.20	12.75	2.002	0.150	0.050		[104]
14N+10B	5.72	0.65	7.79	0.153	0.180	1.105	EVR	[105]
¹⁴ N+ ¹² C	6.90	0.64	7.64	0.648	0.430	0.430	EvR	[106]
$^{14}N + ^{14}N$	7 5 5	0.74	6 10	0	0.024	0.042	EvR	[107]
14 14	7.55	0.74	0.10	0	0.024	0.042		[107]
¹⁴ N+ ¹⁴ N	8.25	0.81	8.12	0.181	2.372	1.327	EvR	[108]
¹⁴ N+ ¹⁴ N	8.23	0.80	8.11	0.196	1.537	1.370	EvR	[92]
14N+16O	0.22	0.02	0 70	0.100	0.221	0.220	Evp	[02]
14 50 J	9.25	0.85	8.70	0.199	0.221	0.228	EVK	[92]
¹⁴ N+ ⁵⁹ Co	26.81	1.41	9.46	0.367	0.282	0.509	EvR	[109]
¹⁴ N+ ²³² Th	70.99	2.03	12.13	1.933	0 185	0.163	FF	[110]
15 1.54 5-	26.10	1.01	10.04	0	0.554	0.053	ГD	[110]
¹⁵ N+ ⁵ Fe	26.19	1.81	10.04	0	0.554	0.952	EVR	
¹⁵ N+ ²⁰⁹ Bi	66.53	1.58	10.90	0	0.159	1.595	FF	[112]
$^{16}O + ^{12}C$	7 7 2	0.67	7.81	0 543	4 989	1 782	EVR	1113
160.130	7.72	0.07	7.01	0.545	4.505	1.702	EVR	[115]
100+13C	7.80	0.80	7.29	0	0.344	0.590	EVR	[114]
¹⁶ O+ ¹⁴ N	9.16	0.82	8.25	0.176	0.259	0.268	EvR	[106]
$^{16}O + ^{16}O$	10 34	0 02	8 50	0.146	0.253	0.250	EvP	1115
160,160	10.04	0.52	0.00	0.140	0.235	0.200	EVIN	
100+100	10.32	0.95	9.09	0	0.229	0.638	EVR	[116]
¹⁶ O+ ²⁷ Al	15.76	1.19	7.41	0	0.015	0.077	EvR	[117]
16 Ou 46 T:	20.70	1 40	0.00	0 450	0.071	0.076	Evn	[110]
10+11	26.21	1.40	8.92	0.459	0.071	0.076	EVK	[118]
¹⁶ O+ ⁵⁰ Ti	26.06	1.65	8.28	0.050	0.222	1.031	EvR	[109]
¹⁶ O+ ⁵⁰ Ti	25.98	1 5 5	9.12	0 125	0.075	0.445	EvR	[118]
160.545	20.00	1.55	5.12	0.125	0.075	0.445	EVR	
¹⁰ O+ ³⁴ Fe	30.29	1.46	8.76	0.404	0.340	0.693	EVR	
¹⁶ O+ ⁵⁶ Fe	30.24	1.05	9.13	3.085	0.445	0.330	EvR	[111]
16 O+ 58 NG	21.22	1.07	0.22	0 129	1 260	1 5 5 6	Evp	[110]
16 a. 62 a.u	51.52	1.07	5.55	0.120	1.200	1.550	LVK	[119]
¹⁰ O+ ⁶² Ni	30.54	1.04	8.93	0.179	1.265	0.472	EvR	[119]
¹⁶ O+ ⁶³ Cu	34.88	2.77	9.20	0	0 391	0.390	EvR	[120]
160+630	25.22	2.00	0.44	ů 0	0.624	0 5 1 9	Evp	[120]
0+°Cu	55.52	2.69	9.44	0	0.034	0.518	EVK	
¹⁶ O+ ⁶³ Cu	33.07	1.03	8.95	1.402	0.115	0.003	EvR	[122]
$^{16}O+^{65}Cu$	33.68	2.86	8 97	0	0 302	0 358	FvR	[120]
160,647	22.00	2.00	10.22	0	0.302	0.550	Evit	[120]
100+01Zh	33.00	2.54	10.32	0	0.230	0.265	EVK	[123]
¹⁶ O+ ⁷⁰ Ge	34.76	1.45	9.75	0	0.955	0.189	EvR	[124]
¹⁶ O+ ⁷² Ce	35.62	1 79	10.03	0	1 700	0 370	EvR	124
160.736	55.02	1.75	10.05	0	1.700	0.570	EVR	
100+73Ge	33.98	1.01	8.31	1.880	0.064	0.034	EVR	[124]
¹⁶ O+ ⁷⁴ Ge	34.89	1.16	9.66	2.095	1.729	0.631	EvR	[124]
160+76Ca	34.05	1 1 2	0.42	1 066	0.775	0.612	Evp	[125]
16 a 76 a	54.95	1.12	9.45	1.900	5.775	0.012	LVK	[12]
¹⁰ O+ ⁷⁰ Ge	34.50	1.13	9.55	1.624	1.188	0.279	EvR	[124]
$^{16}O + ^{92}Zr$	41 47	1.58	9.56	0	3 6 3 3	1.394	EvR	[96]
160+112Cd	10 10	1.66	11.02	ů 0	0.414	1 001	Evp	[106]
0+ Cu	40.20	1.00	11.02	0	0.414	1.891	EVK	[120]
¹⁶ O+ ¹¹² Sn	50.61	1.38	9.81	0.127	0.811	19.177	EvR	[127]
¹⁶ O+ ¹¹⁶ Sn	50.20	1.39	9 96	0.155	0 793	3,315	EvR	[127]
16 O + 144 N d	57.21	1.50	11 10	0	0.042	0.145	Evp	[100]
16 150	57.51	1.55	11.12	U	0.042	0.145	LVK	[128]
100+150Nd	57.04	1.67	9.25	0	0.555	0.120	EvR	[73]
¹⁶ O+ ¹⁴⁴ Sm	60.51	1.59	10.34	0	21,851	4.572	EvR	[129]
160+1475-	FOOA	1 4 4	0.01	0	0 707	1 = = 4	Evn	[120]
0T 5111	30.04	1.44	9.01	U	0.797	1.554	EVK	[130]
10O+148Sm	59.73	1.75	10.51	1.158	9.033	1.269	EvR	[129]
¹⁶ O+ ¹⁴⁸ Sm	59.74	2.07	11.26	0	0.215	0.384	EvR	[130]
160+1480-	E0.1E	1 00	0.70	0	0.154	0.154	Evn	[101]
07 SIII	59.15	1.00	9.13	U	0.134	0.154	EVK	[131]
10O+149Sm	58.95	1.88	9.97	0	0.523	1.714	EvR	[130]
¹⁶ O+ ¹⁵⁰ Sm	59.20	1.67	10.64	1.481	0.099	0.098	EvR	[131]
16 O+ 152 cm	50.20	1.07	10.95	2 107	0.216	0.204	EvP	[121]
16 - 15 4 C	79.67	1.80	10.80	2.197	0.210	0.204	EVK	[131]
100+154Sm	58.90	2.53	10.13	0	0.039	0.037	EvR	[131]
¹⁶ O+ ¹⁵⁴ Sm	59.03	2.80	10.30	0	0.095	0.024	EvR	[132]
16 O+ 154 cm	E0 20	1.00	10 16	1 = 1 2	2 200	1 700	EvD	[100]
UT 154	39.20	1.99	10.40	1.545	3.208	1./85	LVK	[129]
¹⁰ O+ ¹⁵⁴ Sm	59.21	1.84	10.20	1.992	3.395	2.101	EvR	[133]
¹⁶ O+ ¹⁶⁶ Fr	63 66	1 48	10.29	2,643	0.673	1,126	EvR	[134]
160+174vb	CC E2	2.10	10.23	0.110	0.070	1.120	Evn	[105]
10+***YD	00.52	2.59	10.93	0.119	0.039	1.529	EVK	[135]
¹⁶ O+ ¹⁷⁶ Yb	66.79	2.94	9.75	0.100	1.420	4.830	EvR	[135]
¹⁶ O+ ¹⁸⁶ W	68.31	2.29	10 44	0	6 333	1.323	EvR+FF	136
160, 186147	CO 10	2.23	10.11	0 100	0.000	1.525	EvDIPE	[107]
U+*W	68.18	2.13	10.38	0.106	0.383	1.8/4	EVK+FF	[137]
¹⁶ O+ ¹⁹⁴ Pt	72.60	2.18	11.73	0.003	0.028	0.047	EvR+FF	[138,139]
16 O+208 ph	73 70	1 20	10.62	1 877	20 220	0.080	FvP+FF	[32]
16 o. 209 pr	13.13	1.20	10.02	1.0//	23.330	0.005		
100+200 Pb	74.13	1.23	10.59	2.135	0.097	0.151	EVR+FF	[112]
¹⁶ O+ ²⁰⁹ Bi	75.03	1.21	10.75	2.245	0.088	0.138	FF	[112]
16 O+209 D;	77 17	2 / 2	10.11	0.210	1 072	2 207	FC	[140]
UT DI	//.1/	2.45	10.11	0.219	1.925	2.397	rr	[140]
1/ 0+12C	7.66	0.70	7.27	0.208	0.111	0.065	EvR	[141]
¹⁷ O+ ¹² C	9.50	0.83	11.51	3.671	1.253	2.932	EvR	[142]
170+130	7 00	0.00	C 0 1	0.000	0.275	0.422	EvP	[1/2]
	7.00	0.05	0.01	0.000	0.275	0.452	EVIX	[142]

Table A (continued).

Table A (continued).								
¹⁷ 0+ ¹⁶ 0	10.08	0.93	9.11	0.143	0.628	11.320	EvR	[116]
¹⁷ O+ ¹⁴⁴ Sm	60.25	1.86	10.42	0	5.928	4.610	EvR	[129]
¹⁸ O+ ⁹ Be	4 96	0 49	6.57	0.858	0.090	1,765	EvR	143
¹⁸ O+ ¹² C	7.42	0.15	7.24	2 401	0.050	0.028	EVR	[1/1]
180,120	7.45	0.33	7.34	2.401	0.032	0.028	EVR	[141]
18 2 16 2	7.71	0.87	7.42	0	0.008	0.729	EVK	[144]
180+100	9.90	0.85	8.07	0.153	0.419	0.769	EVR	[116]
¹⁸ O+ ⁴⁴ Ca	22.44	1.37	8.35	0.027	0.230	0.643	EvR	[95]
¹⁸ O+ ⁵⁸ Ni	31.68	2.85	8.02	0	2.540	0.995	EvR	[145]
¹⁸ O+ ⁶⁰ Ni	33.77	2.72	10.70	0	1 474	1 493	EvR	[146]
¹⁸ O+ ⁶⁴ Ni	33.70	2.36	9.77	0	0.456	0.488	EVR	[1/6]
180.630	24.22	2.00	10.00	0 5 1 2	0.220	0.400	EVR E-D	[120]
18 - 74 -	34.32	2.30	10.09	0.513	0.229	0.186	EVK	[120]
¹⁸ 0+/4Ge	34.31	1.09	9.23	2.076	32.807	0.795	EVR	[125]
¹⁸ O+ ¹⁴⁸ Nd	58.21	2.95	9.13	0	0.088	0.101	EvR	[73]
¹⁸ O+ ²⁰⁸ Pb	74.14	1.33	10.79	2.562	0.175	0.290	FF	[112]
¹⁹ F+ ⁵⁴ Fe	33.87	3.14	9.50	0	0.334	0.564	EvR	i111i
19 E+56 Ee	33.00	273	9.10	0	0.611	0.852	EVP	[111]
19 E 193 NIL	JJ.00	2.75	0.00	0	0.011	0.032	EVR	[11]
10 - 181 -	47.00	2.51	9.98	0	0.905	0.217	EVK	[147]
¹⁹ F+ ¹⁸¹ Ta	76.22	2.90	10.96	0.954	0.149	0.031	EVR+FF	[148]
¹⁹ F+ ¹⁸⁸ Os	78.21	2.96	10.34	0	0.208	0.259	EvR+FF	[149]
¹⁹ F+ ¹⁹² Os	78.80	2.11	10.31	3.142	0.028	0.028	EvR+FF	[149]
¹⁹ F+ ²⁰⁸ Pb	82.48	2.28	10.97	0.516	12.345	0.161	EvR+FF	[150]
¹⁹ F+ ²⁰⁸ Ph	83.47	271	11.22	0.275	0.211	0 294	FF	[151]
19 E + 208 Dh	03.47	2.71	12.07	0.275	0.211	2 277	FF	[151]
19 - 209	05.04	2.37	12.07	0.000	0.772	5.277	rr FF	[132]
¹⁵ F+205B1	83.96	2.60	10.84	0	0.722	0.337	FF	[153]
¹⁹ F+ ²³² Th	87.85	3.90	9.91	0	0.698	0.732	FF	[154]
¹⁹ F+ ²³² Th	89.94	4.23	12.01	0	0.034	0.071	FF	[155]
¹⁹ F+ ²³² Th	90.28	4.61	13.51	0.373	1.815	6.393	FF	[156]
²⁰ Ne+ ²⁰⁸ Pb	94 52	2.16	11.22	2 121	0.600	1 025	FF	[157]
20 No 23811	102.02	5.00	11.22	0	0.000	0.022	FF	[157]
23 N 48 T	102.82	5.08	12.52	0	0.703	0.933	rr F D	[158]
²³ Na+ ⁴⁰ I1	33.45	0.86	9.30	3.361	0.199	0.365	EVK	[159]
²³ Na+ ²⁰⁶ Pb	99.46	2.74	11.59	0.002	0.002	0.006	FF	[159]
²⁴ Mg+ ²⁴ Mg	22.07	1.09	8.57	1.437	1.341	0.194	EvR	[160]
²⁴ Mg+ ²⁶ Mg	20.89	1.24	8.35	0	0.376	0.047	EvR	160
²⁴ Mg+ ³⁰ Si	24.10	1.06	8.07	0 107	0.260	1 108	FvR	[161]
$^{26}Mg^{+248}Cm$	129.60	5.16	14.00	0.107	0.200	1.100	EVIC	[162]
²⁷ A1: 45 C	120.00	J.10	14.05	0.015	0.045	1.212	FF D	[102]
²⁷ AI+ ⁴⁵ SC	37.86	1.33	7.70	0.237	0.102	1.927	EVK	[163]
²⁷ Al+ ⁷⁰ Ge	54.15	1.76	9.08	0	1.856	0.719	EvR	[164]
²⁷ Al+ ⁷² Ge	54.00	1.61	9.02	0.238	1.700	0.750	EvR	[164]
²⁷ Al+ ⁷³ Ge	54.12	1.60	8.79	1.254	0.485	0.363	EvR	[164]
²⁷ Al+ ⁷⁴ Ge	53.15	1.20	8.14	1 475	0.846	0.689	EvR	[164]
²⁷ A1+ ⁷⁶ Co	52.17	1.20	0.11	1.175	1 0 2 9	0.005	EVR	[164]
29 41 197 4	111.00	1.55	0.07	1.220	0.000	0.428	EVK	[104]
AI+ AU	111.09	2.96	11.00	0	0.090	0.528		[165]
²⁰ S1+ ²⁴ Mg	24.51	1.09	8.13	0.082	1.035	15.515	EVR	[166]
²⁸ Si+ ²⁴ Mg	24.64	0.91	8.10	1.318	1.536	0.160	EvR	[160]
²⁸ Si+ ²⁶ Mg	24.91	1.10	8.47	0.110	1.834	1.834	EvR	[166]
²⁸ Si+ ²⁸ Si	29.03	1.63	8.26	0	2.384	0.919	EvR	1601
²⁸ Si+ ²⁸ Si	20.53	1 / 1	0.12	- 0.207	0.805	25 466	EVP	[167]
286:1296:	20.00	1.41	0.12	0.207	0.005	1 100	EVR	[160]
28 ct - 30 ct	20.33	1.42	0.24	0	2.245	1.100	EVK	
20 51+50 51	28.22	1.41	8.41	0	1.645	0.270	EVK	[160]
²⁸ Si+ ³⁰ Si	28.73	1.75	8.18	0	0.158	0.441	EvR	[95]
²⁸ Si+ ³⁰ Si	28.19	1.13	8.02	0.120	1.054	1.217	EvR	[168]
²⁸ Si+ ⁵⁸ Ni	53.92	1.52	9.01	0.188	3.051	8.115	EvR	[169]
²⁸ Si+ ⁶² Ni	51.33	1.22	7.86	0	0.254	2.776	EvR	[170]
²⁸ Si+ ⁶⁴ Ni	51.33	0 99	8.51	2,686	0 167	0.910	EvR	1701
²⁸ Si+ ⁶⁴ Ni	50.37	1 30	7 23	0.131	0.328	1643	EVP	[171]
28 c: 164 NI	50.57	1.30	7.10	0.101	0.320	0.594	EVIN	[172]
SI+* 'INI	50.72	1.23	/.18	U	0.100	0.584	EVK	[1/2]
²⁸ Si+ ⁶⁸ Zn	53.43	1.40	7.47	0	4.352	3.577	EvR	[173]
²⁸ Si+ ⁶⁸ Zn	53.42	1.44	7.67	0	0.350	2.250	EvR	[174]
²⁸ Si+ ⁹⁰ Zr	72.36	2.17	10.24	0.110	0.795	1.751	EvR	[175]
²⁸ Si+ ⁹² Zr	70.23	2.47	9.63	0	5 7 3 6	0 540	EvR	[96]
$^{28}Si+^{94}7r$	69.70	1 0/	8 25	0.208	1 5 3 2	5 135	EVR	[175]
28 c: 96 7.	70.00	1.04	0.25	0.200	0.501	1 1 0	EVR E-D	[175]
28 c1 - 93 NI	70.00	1.01	J./J	2.990	0.301	1.100		[1/0]
51+ ND	/ 3.52	1.03	10.45	2.972	0.1/6	0./33	EVK	[1/7]
²⁰ Si+ ⁹⁴ Mo	/4.20	1.26	8.03	2.142	2.164	213.559	EVR	[178]
²⁸ Si+ ⁹⁴ Mo	75.35	1.75	8.89	1.487	0.239	1.190	EvR	[179]
²⁸ Si+ ¹⁴⁴ Nd	101.95	2.64	11.94	2.348	0.421	0.244	EvR	[172]
²⁸ Si+ ¹⁵⁴ Sm	101.11	485	10.58	0	1 434	2 274	EvR	1801
28 Ci+164 Er	107.01	2.50	11.66	2 5 1 6	0.028	0.051	EVDTEE	[101]
28 ci 170 c.	107.01	2.00	11.00	2.310	0.000	0.001	EVINTIT'	[101]
31+*** EI	104.15	2.09	11.31	2.909	0.032			[101]
²⁰ Si+ ^{1/0} Ht	114.59	2.98	10.75	2.453	7.061	0.197	EVR+FF	[182]
²⁸ Si+ ¹⁹⁸ Pt	121.64	2.54	10.28	2.171	0.276	0.618	FF	[183]
²⁸ Si+ ²⁰⁸ Pb	126.74	2.15	10.88	3.212	0.147	0.150	FF	[184]
²⁹ Si+ ¹⁷⁸ Hf	114.73	4.36	11.15	0	11.560	2.254	EvR+FF	1821
³⁰ Si+ ²⁴ Mo	23.98	101	8.07	0	0 326	0.293	FvR	[166]
30 51 26 Ma	23.30	1 1 4	0.51	0 140	2 2 10	4 204	EvD	[160]
JIT IVIS	24.0/	1.14	5.51	0.140	2.310	4.394	LVK	ניטו

Table A (continued).

Table A (continued).								
³⁰ Si+ ³⁰ Si	28.10	0.91	8.60	0	0.763	1.862	EvR	[95]
³⁰ Si+ ⁵⁸ Ni	52.74	1.44	8.70	0.277	0.220	1.676	EvR	[170]
³⁰ Si+ ⁶² Ni	51.94	1.42	9.57	0.180	0.552	7.554	EvR	[170]
30 SI+0 NI	51.29	1.31	9.45	0.190	0.404	0.902	EVK EVD+EE	[1/0]
³⁰ Si+ ²³⁸ U	109.34	5.40	13.12	2.020	0.087	5 5 2 3	EVNTIF FF	[140]
³⁰ Si+ ²³⁸ U	137.69	4.68	11.07	0	0.225	6.054	FF	[185]
³¹ P+ ¹⁷⁵ Lu	120.53	4.75	10.98	0	2.505	0.171	EvR+FF	[182]
³² S+ ¹² C	15.14	1.07	8.30	0	0.291	1.010	EvR	[187]
³² S+ ¹³ C	15.78	1.29	9.55	0.077	0.276	0.743	EvR	[187]
³² S+ ²⁴ Mg	27.84	1.12	8.71	0.489	0.118	0.178	EvR	[188]
³² S+ ²⁵ Mg	27.09	1.11	8.31	0	0.256	0.378	EvR	[188]
³² S+ ²⁰ Mg	27.05	1.19	8.47	0	0.305	0.820	EvR	[188]
³² S+ ²⁷ AI	29.70	1.17 1.40	8.78	0 192	0.612	1.004	EVK	[188]
³² S+ ⁵⁸ Ni	42.J7 58.47	0.89	8.10	1 724	1 002	2 401	EVR	[100]
³² S+ ⁵⁸ Ni	59.64	1.32	8.49	0.114	0.264	1.688	EVR	[170]
³² S+ ⁵⁸ Ni	59.60	1.29	8.38	0.156	0.672	2.871	EvR	[191]
³² S+ ⁶⁴ Ni	56.74	1.03	8.38	2.005	0.314	0.154	EvR	[190]
³² S+ ⁶⁴ Ni	58.94	1.73	10.21	2.964	1.238	0.704	EvR	[173]
³² S+ ⁶⁴ Ni	59.40	2.99	11.03	0	0.239	1.661	EvR	[174]
³² S+ ⁶⁴ Ni	57.44	1.51	8.32	0.154	0.361	2.129	EvR	[191]
³² S+ ⁶⁴ Ni	57.41	1.51	8.33	0.156	0.321	2.559	EvR	[170]
³² S+ ⁶⁹ Y	76.94	1.22	9.63	2.132	9.856	2.061	EvR	[192]
³² S+ ³⁰ Zr ³² S+ ⁹⁴ Zr	/9.3/	1.68	10.40	2.180	44.555	4.001	EVK	[37]
³² S + ⁹⁶ 7 r	78.97	2.55	10.80	1.092	41.002	2.852	EVK	[195]
³² S+ ⁹⁴ Mo	78.20 83.16	2.31	10.11	1.949	42.939	1.009	EVR	[37]
³² S+ ⁹⁸ Mo	82.16	1.89	9.20	2,777	5 571	13 037	EVR	[194]
³² S+ ¹⁰⁰ Mo	83.29	2.57	10.18	1.925	2.959	2.484	EvR	[194]
³² S+ ¹⁰⁰ Ru	84.05	1.88	8.32	0.182	0.218	8.962	EvR	[194]
³² S+ ¹⁰¹ Ru	84.77	2.61	8.51	0	0.279	0.902	EvR	[194]
³² S+ ¹⁰² Ru	84.04	2.31	8.59	0	0.615	2.061	EvR	[194]
³² S+ ¹⁰⁴ Ru	83.31	2.58	8.38	0	0.075	0.449	EvR	[194]
³² S+ ¹⁰³ Rh	85.24	1.71	7.33	1.083	1.754	6.753	EvR	[194]
³² S+ ¹⁰⁵ Pd	86.80	2.13	7.35	0	0.046	0.230	EvR	[194]
³² S+ ¹⁰⁸ Pd	86.00	1.80	7.28	0	0.304	2.938	EVK	[194]
32 S+110 Pd	87.01	2.03	7.09 8.61	1 395	0.199	0.300	EVR	[194]
³² S+ ¹¹⁰ Pd	87.82	2.13	8.59	1.863	0 275	0.550	EVR	[194]
³² S+ ¹¹² Sn	94.98	1.73	8.93	0.965	0.117	0.598	EvR	[127]
³² S+ ¹²⁰ Sn	94.13	1.89	9.65	1.738	0.255	0.331	EvR	[127]
³² S+ ¹³⁸ Ba	107.55	3.14	10.36	1.241	4.382	3.078	EvR+FF	[195]
³² S+ ¹⁵⁴ Sm	112.78	3.64	8.91	1.133	0.220	0.403	EvR+FF	[196]
³² S+ ¹⁸² W	131.10	2.39	9.89	2.575	0.526	2.395	FF	[197]
³² S+ ¹⁸⁴ W	127.12	2.91	9.24	0.193	0.153	0.224	EvR+FF	[198,199]
³³ S+ ³¹ Zf ³³ S+ ⁹² 7r	78.03	1.75	9.52	0	0.201	0.976	EVK	[200]
³⁴ S+ ²⁴ Mσ	27 50	1.55	9 31	0.129	0.209	7 702	EVR	[200]
³⁴ S+ ²⁶ Mg	26.93	1.12	9.00	0.125	0.675	1 5 3 9	EVR	[188]
³⁴ S+ ⁵⁸ Ni	58.60	1.27	7.78	0	0.058	0.385	EvR	[170]
³⁴ S+ ⁶⁴ Ni	56.42	1.37	8.52	0	0.412	0.250	EvR	[190]
³⁴ S+ ⁶⁴ Ni	56.99	1.29	8.81	0	0.090	0.490	EvR	[170]
³⁴ S+ ⁸⁹ Y	76.10	1.42	9.67	0	11.382	2.220	EvR	[192]
³⁴ S+ ¹⁶⁸ Er	121.60	2.96	10.46	2.055	2.564	0.123	EvR+FF	[34]
³⁴ S+ ¹⁰⁸ Er	121.44	2.88	10.36	2.109	0.065	0.045	EVR+FF	[201]
34 S+100 EF	123.61	3.29	10.64	1.883	2.333	0.346	FF	[34]
34 S+206 Pb	142.41	2.03	9.45	0	0.078	13 544	FF	[202]
³⁴ S+ ²⁰⁸ Ph	141.30	1.57	9.50	2 378	0.205	10.072	FF	[202]
³⁴ S+ ²³⁸ U	153.29	4.77	8.95	0	0.074	1.046	FF	[203]
³⁶ S+ ⁴⁸ Ca	42.44	1.22	10.39	0.232	0.603	2.775	EvR	[204]
³⁶ S+ ⁴⁸ Ca	42.15	1.09	11.13	0.238	1.091	21.585	EvR	[205]
³⁶ S+ ⁵⁸ Ni	58.30	1.42	7.58	0.171	0.105	0.644	EvR	[170]
³⁶ S+ ⁵⁸ Ni	58.34	1.42	7.91	0.184	0.162	0.834	EvR	[191]
³⁰ S+ ⁶⁴ Ni	57.04	1.17	8.88	0.153	0.415	1.875	EvR	[191]
³⁰ S+ ⁶⁴ Ni	56.87	1.14	8.83	0.137	0.157	1.386	EvR	[170]
³⁶ S+ ⁹⁰ N1	56.25	1.19	9.79	0.121	5.629	2.783	EVR	[206]
36 S+96 7r	75.35	1.30	11.14	U 3 6 4 9	3.920	1.072	EVK	[207]
³⁶ S+ ⁹² Mo	84.87	2.04	13.87	3 978	0.499	9 453	EVR	[207]
³⁶ S+ ⁹⁴ Mo	80.82	1.91	10.25	0	0.665	7.829	EvR	[194]
³⁶ S+ ⁹⁶ Mo	79.83	1.14	8.41	2.051	2.374	8.993	EvR	[194]
³⁶ S+ ⁹⁸ Mo	78.61	0.83	8.68	2.667	0.810	1.136	EvR	[194]
³⁶ S+ ¹⁰⁰ Mo	78.92	1.08	10.02	2.689	0.492	1.379	EvR	[194]

Table A (continued).

Table A (continued).								
³⁶ S+ ¹⁰⁰ Ru	82.93	1.24	8.45	1.542	0.731	14.787	EvR	[194]
³⁶ S+ ¹⁰¹ Ru	82.79	1.64	9.75	0	0.122	0.346	EvR	[194]
³⁶ S+ ¹⁰² R11	81 97	1 41	8 42	0.021	7 317	3 355	FvR	[194]
36 S+ 104 B11	83.18	150	10.54	2 2 1 6	2 3 1 2	6 163	EvR	[10/]
36 c + 106 p.d	05.10 07.76	1.50	11.02	2.210	0.055	4 9 9 2	EVR	[104]
36 c 108 p J	87.70 87.40	1.40	11.02	3.730	0.933	4.005		[194]
³⁶ 2 110 Pd	87.49	1.55	10.41	3.395	0.071	2.187	EVR	[194]
⁵⁰ S+ ¹¹⁰ Pd	86.08	1.52	8.57	1.819	7.026	0.932	EvR	[38]
³⁶ S+ ¹¹⁰ Pd	84.74	1.53	7.96	0.161	1.484	19.173	EvR	[194]
³⁶ S+ ²⁰⁴ Pb	141.08	1.01	9.60	3.362	0.203	3.384	FF	[202]
³⁶ S+ ²⁰⁶ Pb	139.98	1.38	8.97	0	0.463	9.838	FF	202
³⁶ S+ ²⁰⁸ Ph	139.90	1 36	9 92	0	0.282	6 264	FF	[202]
36 C+238 I	154.91	1.50	12.26	0 004	0.424	2.015	EE	[162]
35 C1 + 24 M	20.22	1.15	12.20	0.304	1.507	2.015	II E-D	[200]
25 -1 25	30.22	1.05	9.84	0.192	1.597	1.928	EVK	[208]
⁵⁵ CI+ ²⁵ Mg	30.08	1.85	9.31	0	0.980	1.047	EVR	[208]
³⁵ Cl+ ²⁶ Mg	29.47	1.93	8.29	0	0.378	0.370	EvR	[208]
³⁵ Cl+ ²⁷ Al	30.55	0.76	8.26	0	0.234	0.110	EvR	[209]
³⁵ Cl+ ⁵¹ V	51.66	1.59	10.38	0.012	0.153	0.190	EvR	[210]
³⁵ Cl+ ⁵⁸ Ni	61.32	1 40	9.00	0	0 907	1.373	EvR	209
³⁵ Cl+ ⁶⁰ Ni	61.03	2 12	0.00	0	0.511	1583	EvR	[200]
35 C1 (62 N)	01.05	1.52	0.49	1 C 1 E	0.311	0.107		[203]
35 CL 62 N	00.39	1.55	9.40	1.015	0.214	0.107		[209]
³⁵ CI+ ⁶² Ni	60.73	1.57	9.65	1.850	0.190	0.143	EVR	[211]
³⁵ Cl+ ⁶² Ni	60.71	1.69	9.59	1.318	0.089	0.067	EvR	[209]
³⁵ Cl+ ⁶⁴ Ni	60.30	2.26	9.67	0	0.373	0.388	EvR	[209]
³⁵ Cl+ ⁹² Zr	82.50	2.33	9.74	0	2.757	1.044	EvR	[96]
³⁵ Cl+ ¹³⁰ Te	102.37	2.71	11.67	0	0.191	0.281	EvR+FF	[212]
$^{37}Cl+^{24}Mg$	20.30	1 98	8 54	0	0.467	0.493	FvR	[208]
$^{37}C1+^{25}Mg$	20.00	0.01	0.34	1 775	0.407	4 220	EVR	[200]
37 CL 26 M	20.00	0.91	0.54	1.773	2.455	4.520	EVK	[200]
57 CI+25 Mg	28.61	0.87	7.59	1.779	0.452	0.441	EVK	[208]
³⁷ Cl+ ³⁹ Co	58.36	1.48	8.74	0	1.252	0.701	EvR	[173]
³⁷ Cl+ ⁷⁰ Ge	66.97	1.68	8.31	0	0.741	0.600	EvR	[213]
³⁷ Cl+ ⁷² Ge	67.01	1.60	8.90	0	1.121	0.300	EvR	[213]
³⁷ Cl+ ⁷³ Ge	67.45	2.41	8.37	0	0.877	0.327	EvR	[213]
³⁷ Cl+ ⁷⁴ Ge	68.04	2.52	9.75	0	0.361	0.175	EvR	[213]
³⁷ Cl+ ⁷⁶ Ce	68.13	1.62	10.11	2 461	0.405	0 122	FvR	[213]
³⁷ CI+ ⁹⁸ Mo	84.08	1.02	0.20	0	0.127	0.122	EVR	[213]
40 A = 110 D 4	04.90	1.55	0.00	0	0.127	1.300	EVK	[214]
¹⁰ AF+ ¹¹⁰ P0	97.26	4.08	11.04	0	0.457	1.256	EVK	[132]
⁴⁰ Ar+ ¹¹² Sn	104.77	1.86	9.43	1.910	0.776	1.075	EVR+FF	[215]
⁴⁰ Ar+ ¹¹⁶ Sn	104.89	1.99	9.65	2.267	0.371	0.194	EvR+FF	[215]
⁴⁰ Ar+ ¹²² Sn	104.55	2.13	10.38	2.020	1.832	2.154	EvR+FF	[215]
⁴⁰ Ar+ ¹⁴⁴ Sm	125.75	2.01	9.24	1.674	2.289	2.525	EvR+FF	[215]
⁴⁰ Ar+ ¹⁴⁴ Sm	126.73	2.20	9.61	1.539	0.602	2.438	EvR	[216]
⁴⁰ Ar+ ¹⁴⁸ Sm	127 50	3.07	10.42	1 902	2 628	6 590	FvR+FF	[215]
40 Ar + 148 Sm	127.36	3.01	10.12	2 778	0.766	3 7 7 7	EVR	[216]
40 A m + 154 C m	127.30	2.01	0.71	2.770	0.700	10.005		[210]
40 4 154 6	125.41	5.00	9.71	1.901	0.920	10.065		
40 c 176 c 2	126.04	5.14	12.49	0	0.496	1.687	EVR	[216]
⁴⁰ Ar+ ¹⁷⁶ Hf	146.00	7.23	10.89	0	0.887	0.244	FF	[217]
⁴⁰ Ar+ ¹⁷⁹ Hf	144.96	7.24	10.86	0	0.595	0.146	FF	[217]
⁴⁰ Ar+ ²⁰⁸ Pb	158.75	3.86	10.56	0	4.271	1.273	FF	[217]
⁴⁰ Ca+ ⁴⁰ Ca	53.32	1.37	9.93	0.137	1.689	8.400	EvR	[218]
⁴⁰ Ca+ ⁴⁰ Ca	53.51	1.31	10.15	0.165	0.636	7.953	EvR	219
$^{40}C_{2}+^{44}C_{2}$	52.08	1 16	8 75	1658	0.281	4 082	EvR	[218]
⁴⁰ C2+ ⁴⁸ C2	51.00	1.10	7.96	0	0.201	2 2 2 7	EVR	[210]
40 Ca + 48 Ca	51.20	1.47	7.00	0 0 0 1 2	4.252	2.527	EVR	[220]
40 c 48 c	J1.0/	1.57	0.24	0.010	4.233	2.302		[220]
~ La+™ La	51.68	1.67	11.29	0.043	8.322	1.094	EVK	[221]
⁴⁰ Ca+ ⁴⁶ Ti	57.21	1.41	9.37	0	0.128	0.459	EvR	[222]
⁴⁰ Ca+ ⁴⁸ Ti	56.97	1.45	9.20	0	0.052	0.250	EvR	[222]
⁴⁰ Ca+ ⁵⁰ Ti	57.00	1.62	9.03	0	0.024	0.093	EvR	[222]
⁴⁰ Ca+ ⁵⁸ Ni	71.71	1.90	8.87	0	0.458	1.120	EvR	223
⁴⁰ Ca+ ⁵⁸ Ni	71.15	1 30	8 60	0	0 342	0.890	FvR	[224]
40 Ca+60 Ni	70.02	1.00	0.00	0	0.068	0.259	EVR	[22]
40 Ca + 62 Ni	70.95	1.33	9.40	0	0.008	0.338	EVIX EviDi EE	[223]
40 Ca + 62 M	70.00	2.32	J.JJ	0	0.237	0.472		[223]
** Ca+*** IN1	/0.80	2.39	9.52	U	0.341	0.668	EVK	[223]
[*] Ca+ [°] Ni	69.44	1.39	8.68	1.412	0.808	6.110	EvR	[224]
40Ca+90Zr	96.18	1.58	10.00	0	5.326	0.226	EvR	[26]
⁴⁰ Ca+ ⁹⁰ Zr	96.40	1.54	9.97	0	0.304	0.218	EvR	[225]
⁴⁰ Ca+ ⁹⁴ Zr	94.95	2.60	9.96	0.394	0.601	0.197	EvR	[226]
⁴⁰ Ca+ ⁹⁶ Zr	94.09	2.16	9.62	1.443	3.419	0.115	EvR	[26]
$^{40}C_{2}+^{96}7r$	94 32	2 17	9.60	1 411	0.079	0.063	FVR	[225]
$40_{C_{2}}$	05.05	2.17	10.20	2 204	0.075	0.600	EVIL	[223]
40 Ca + 124 Ca	112.00	2.20	0.23	2.307	0.100	0.021	EVIN	[220]
Ca+ 'Sn 40 c 124 c	113.22	2.19	9.62	0.809	2.543	0.248	EVK	[228]
™Ca+12ªSn	113.34	2.26	9.56	0.792	1.399	0.119	EVK	[229]
⁴⁰ Ca+ ¹⁹² Os	166.75	4.69	10.24	0.185	0.368	2.358	FF	[230]
⁴⁰ Ca+ ¹⁹⁴ Pt	171.46	3.31	9.71	1.473	0.386	0.889	FF	[230]
⁴⁰ Ca+ ¹⁹⁷ Au	174.59	6.84	10.61	0.179	3.159	1.645	FF	[231]
⁴⁰ Ca+ ²⁰⁸ Pb	176.68	3.91	9.96	2.503	5.646	0.098	FF	231
								r 1

Table A (continued).

""""" """ "" "" ' ' ' ' " " " ' ' ' '<	Table A (continued).								
"G-m ² Co 51.51 1.10 1.0.41 0.202 2.655 36.45 FAR 1.231 "G-m ² Co 31.60 0.314 30.50 0 31.80 2.071 Bar 2.211 "G-m ² Co 31.60 0.318 0.368 0 31.80 2.071 Bar 2.211 "G-m ⁴ So 134.00 3.44 10.05 131.10 15.80 2.071 Bar 2.231 "G-m ⁴ So 134.00 3.44 10.05 12.31 0.202 13.38 0.337 PK PF 12.31 "G-m ⁴ No 10.23 4.20 11.33 0.202 5.38 0.374 1.402 PK PF 12.31 "G-m ⁴ No 77.50 2.03 0.53 1.454 1.447 0.442 PK PF 12.31 "G-m ⁴ No 77.39 1.30 0.45 0.304 0.331 DVA 1.31 "G-m ⁴ No 77.39 1.30 0.45 0.304 0.31 DVA 1.32	⁴⁰ Ca+ ²³⁸ U	192.86	5.60	8.57	0	0.182	0.464	FF	[232]
""C"C- 51.4 0.68 0.68 0.51.4 1.075 0.786 Perk 1.231 "C"C-T- 0.131 1.31 10.06 3.311 7.065 0.737 Perk 1.231 "C"T-T- 0.134 1.31 10.06 3.311 7.065 0.737 Perk 1.231 "C"T-T- 1.34.4 2.432 1.232 0.244 0.114 0.835 Perk 1.231 "C"T-T- 1.32.7 1.422 1.233 0.244 0.130 0.372 Perk 1.231 "CT-T- 1.232 1.42 1.432 1.432 1.441 0.431 0.332 Perk 1.231 "CT-T- 1.233 0.331 0.376 0.431 0.332 Perk 1.231 "CT-T- 1.333 0.445 1.437 0.343 0.337 Perk 1.231 "CT-T- 1.339 0.453 1.437 0.343 0.337 Perk 1.331 "CT-T-	⁴⁸ Ca+ ⁴⁸ Ca	51.51	1.10	10.43	0.202	2.655	36.945	EvR	233
"Control 3.128 2.074 PDR PDR "Control 3.128 2.074 PDR [234] "Control 134 10.66 3.57 7.00 0.77 For Res [234] "Control 134.40 3.48 10.81 1.81 1388 3.485 Devictive [234] "Control 134.40 3.47 1502 0.134 0.865 FF 1231 "Serve" 61.82 1.40 8.74 1.00 0.37 EV 1241 "Serve" 61.82 1.02 1.03 0.374 EV 1241 "Serve" 1.63 8.58 1.425 0.226 2.311 EV 1241 "Serve" 1.53 8.58 1.425 0.262 2.311 EV 1241 "Serve" 1.53 8.58 1.425 0.262 2.331 EV 1241 "Serve" 7.15 1.63 1.63 0.664 1.633 0.664	⁴⁸ Ca+ ⁴⁸ Ca	51.04	0.88	10.68	0.814	3.075	0 798	FvR	[221]
"Got"Sn 93.4 1.31 1006 5.271 7.000 0.737 128 1231 "Got"Sn 138.4 3.44 10.65 2.228 2.308 3.587 FWHTP 1231 "Got"Sn 117.48 2.480 11.53 0 2.211 135.22 FF 1231 "Got"Sn 10.57 10.74 2.201 10.38 0.035.2 FF 1231 "Got"Sn 0.55 10.74 2.201 10.38 0.035.7 FF 1231 "Got"Sn 0.55 10.74 2.201 10.38 0.035.7 FF 1231 "How 10.52 2.37 0.56 1.632 0.442 0.432 0.442 0.442 FF 1241 "How 10.52 1.52 1.55 1.55 1.57 0.632 0.66 1.633 0.616 57 1.47 "How 10.56 1.57 1.57 1.57 1.57 1.57 1.57 1.57 <	$^{48}C_{2+}^{90}7r$	0470	1 79	0.86	0	5 126	2.074	EVR	[224]
abs b	$48 C_{2} + 967\pi$	02.42	1.70	5.00	2 071	7.000	2.074	EVK	[234]
""b-"" Hall <	48 c 154 c	93.43	1.31	10.06	3.8/1	7.090	0.737	EVK	[234]
************************************	⁴⁰ Ca ⁺¹⁵⁴ Sm	140.22	4.16	10.63	1.811	1.856	3.485	EVR+FF	[235]
#c.h.*#h 17.54 2.89 12.53 0 2.821 18.52 F 1337 #c.h.*#h 133.27 4.52 1.55 1.242 0.114 0.855 14.57 12.337 #r1-#%n 0.30 1.55 1.242 1.007 0.345 0.037 164 1.77 #r1-#%n 0.633 2.37 10.45 1.007 0.345 0.237 Evk 153 #r1-#%n 7.715 1.34 8.58 1.462 0.244 0.237 Evk 123 #r1-#%n 7.799 1.62 1.678 0.668 0.350 Evk 124 #r1-#%n 7.799 1.62 1.658 0.357 0.582 1247 144 #r1+#%n 7.727 1.99 9.70 1.81 1.466 2.475 1.237 Evk 147 #r1+#%n 7.727 1.99 9.70 1.23 0.128 2.775 1.237 2.84 1.417 #r1+#%n	⁴⁸ Ca+ ¹⁵⁴ Sm	138.49	3.44	10.65	2.228	2.308	3.587	EvR+FF	[236]
"ac.+"" 193.27 4.62 11.55 0.204 0.114 0.865 FF 1232 "Ti-Tin" 61.30 1.35 10.74 2.081 5.638 0.037 Evel 1231 "Ti-Tin" 61.30 1.35 10.74 2.081 5.638 0.037 Evel 1231 "Ti-Tin" 61.30 3.61 10.78 0 0.444 0.132 Evel 151 "Ti-Tin" 71.50 1.43 8.58 1.425 0.226 2.381 Evel 1240 "Ti-Tin" 77.39 1.80 9.88 0.165 1.867 0.522 Evel 1240 "Ti-Tin" 77.39 1.80 9.88 0.165 1.867 0.308 Evel 1241 "Ti-Tin" 77.37 1.84 1.18 1.738 0.464 0.130 Evel 1141 "Ti-Tin" 1.33 9.47 1.238 0.444 2.441 2.557 1.573 1.573 1.573	⁴⁸ Ca+ ²⁰⁸ Pb	175.48	2.89	12.53	0	2.821	18.852	FF	[237]
***** ·**** ·*** ·**** ·**** ·**** ·****	⁴⁸ Ca+ ²³⁸ U	193.27	4.62	11.55	0.204	0.114	0.865	FF	[232]
1. 62.00 1.55 10.74 2.031 52.88 0.037 Ev8 [12] ***1.*** 106.31 2.37 10.45 1.007 0.343 0.237 Ev8 [15] ***1.*** 108.70 3.31 10.73 0 0.444 0.137 Ev8 [15] ***1.*** 7.268 2.33 8.33 1.425 0.226 2.331 Ev8 2.231 ***1.*** 7.289 3.29 9.83 0.188 2.375 0.320 Ev8 [14] ***1.*** 7.27 1.99 9.87 0.128 2.475 0.320 Ev8 [15] ***1.*** 10.65 1.31 0.165 1.753 0.444 0.580 Ev8< [15] ***1.*** 1.13 0.128 2.371 0.418 0.428 0.428 0.428 ***1.*** 1.13 0.141 0.241 2.341 Ev8 [14] ****1.********* 0.143 0.357	⁴⁵ Sc+ ⁵¹ V	61.82	1.40	874	1 902	0.130	0.374	EvR	173
************************************	46Ti+46Ti	63.09	1.55	10.74	2 001	5,638	0.037	EVR	[238]
matrix for for<	46T; 164N;	77.05	1.55	0.59	1 464	1 1 47	0.337	EVD	[230]
************************************	46m: 90m	11.03	2.05	9.38	1.404	1.14/	0.442	EVK	[147]
"II-"Nb 108.70 3.61 10.78 0 0.444 0.132 Dr.R [23] "II-"Nb 71.30 1.44 8.88 0.167 1.028 0.331 Dr.R [24] "II-"Nb 77.39 2.40 9.89 0.167 1.028 0.230 Dr.R [24] "II-"Nb 77.39 1.62 1.165 3.759 6.520 2.880 Dr.R [14] "II-"Nb 1.62.64 2.40 9.43 1.866 2.875 0.632 Dr.R [14] "II-"Nb 106.76 1.81 10.16 1.738 0.444 0.130 Dr.R [15] "II-"Nb 106.76 1.81 10.16 1.738 0.448 0.360 Dr.R [16] "II-"Nb 9.10 1.37 9.41 2.241 0.3170 2.352 DR.R [17] "Nb-"Nb 9.13 1.38 8.34 2.356 D.977 D.82 D.878 D.878 "N	40 11+30 Zr	106.23	2.37	10.45	1.007	0.343	0.237	EVK	[15]
******** 7.150 1.43 8.58 1.425 0.226 2.31 EvR 2.401 ******** 7.38 2.24 0.85 0.176 1.667 0.632 EvR 2.401 ******** 7.739 1.80 0.89 0.166 1.683 0.616 EvR 2.401 ******* 7.739 1.80 0.89 0.166 1.683 0.616 EvR 1.401 ******** 0.420 1.37 0.464 0.300 EvR 1.51 ************** 91.67 1.25 9.02 2.571 0.413 2.541 EvR 2.431 ***************** 91.0 1.33 9.41 2.414 5.177 2.856 EvR 2.431 *********************** 91.0 1.47 8.04 2.330 0.330 2.227 EvR 2.331 ************************** 91.78 8.34 2.356 6.497 1.012 8.441 ************************************	⁴⁰ Ti+ ⁹³ Nb	108.70	3.61	10.78	0	0.404	0.132	EvR	[15]
#iii-#iii 78.8 2.24 8.85 0.176 1.667 0.652 EvR [240] #Tire Min 77.39 1.62 11.65 1.753 0.520 2.80 EvR [240] #Tire Min 1.28.45 2.40 8.83 0.166 1.683 0.0163 EvR [241] #Tire Min 1.28.45 2.40 8.84 0.180 2.280 EvR [15] #Tire Min 10.67 1.78 0.448 0.320 EvR [15] #Nin Min 9.167 1.25 9.02 2.515 0.448 0.320 EvR [241] #Nin Min 9.19 1.30 8.44 2.300 0.33 2.227 EvR [242] #Nin Min 9.677 1.57 8.45 2.435 0.404 1.402 EvR [243] #Nin Min 9.677 1.57 8.45 2.467 0.531 0.77 EvR [244] #Nin Min 9.552 8.33	⁴⁸ Ti+ ⁵⁸ Fe	71.50	1.43	8.58	1.425	0.226	2.531	EvR	[239]
"#int-"Mini 77.39 1.80 9.80 0.166 1.683 0.616 EvR 240 "#int-"Sin 1.26.45 2.40 9.43 1.866 2.375 0.652 EvR-FF 1.95 "#int-"Sin 1.72.3 1.04 0.128 2.075 1.237 EvR 1.17 "#int-"Sin 1.04 1.33 0.41 2.173 0.441 0.138 EvR 1.17 "#int-"Fine 1.100 1.33 0.401 2.330 0.303 EvR 1.201 "#int-"Fine 0.130 1.30 8.44 2.356 6.947 1.402 EvR 1.231 "#int-"Fine 0.133 9.44 2.356 6.947 1.402 EvR 1.243 "#int-"Fini 9.739 1.68 8.44 0.330 2.104 EvR 2.431 "Wint-"Fini 9.730 1.68 8.44 0.330 0.100 EvR 2.431 Wint-"Fini 9.733 0.6530 2.01	⁴⁸ Ti+ ⁵⁸ Ni	78.88	2.24	9.85	0.176	1.667	0.582	EvR	[240]
#int=Min 77.99 10.2 11.85 7.99 65.20 2.380 Evk = [149] #int=Min 126.66 2.40 8.43 1.866 2.875 0.295 Evk = [149] #int=Min 10.05 1.31 10.05 1.733 0.043 0.50 Evk = [15] #int=Min 91.67 1.33 9.41 2.414 0.177 2.380 Evk = [16] #int=Min 91.07 1.25 3.02 2.531 0.413 2.641 Evk = [241] #int=Min 91.07 1.25 3.02 2.531 0.547 1.722 Evk = [241] #int=Min 91.09 1.68 8.34 2.356 0.547 1.702 Evk = [241] #int=Min 96.057 1.97 8.45 2.467 0.352 Evk = [241] Evk = [241] #int=Min 96.057 1.97 8.45 0.367 0.392 Evk = [241] Evk = [241] #int=Min 96.057 1.97 8.35 0.613 0.1	⁴⁸ Ti+ ⁶⁰ Ni	77.39	1.80	9.89	0.166	1.683	0.616	EvR	240
and transform isoland	⁴⁸ Ti+ ⁶⁴ Ni	77 99	1.62	11.65	3 7 5 9	6 5 2 0	2 380	FvR	[240]
••n-••• ·•n ··n	48 Ti + 122 C p	176 45	2.40	0.42	1 966	2.975	2.500	EVIC	[105]
The The Direct Constraint of the Constraint	50 T: 60 NI	120.45	2.40	9.45	1.000	2.075	0.932		[195]
"In-"AC 104.29 1.37 10.05 1.73 0.448 0.150 Ev8 151 "NI-"Re 91.07 1.25 30.2 2.571 0.413 2.481 Ev8 [241] "NI-"Re 91.00 1.43 8.44 2.430 1.313 2.481 Ev8 [241] "NI-"Re 91.00 1.47 8.00 2.555 6.047 1.402 Ev8 [241] "NI-"Re 90.10 1.47 8.00 2.555 6.047 1.402 Ev8 [243] "NI-"Re 0.03.0 2.62 7.94 1.336 0.658 2.104 Ev8 [244] "NI-"Re 0.03.0 2.62 7.94 1.336 0.058 2.107 Ev8 [246] "NI-"Re 0.03.0 2.62 7.94 1.336 0.057 0.128 Ev8+FF [246] "NI-"Sin 135.0 1.000 2.406 0.035 0.108 Ev8+FF [246] "NI-"Sin	50 11+00 N1	11.21	1.99	9.87	0.128	2.075	1.297	EVK	[147]
************************************	⁵⁰ Ti+ ⁹⁰ Zr	104.29	1.37	10.05	1.753	0.464	0.130	EvR	[15]
an k-a ^b re 91.07 1.25 9.02 2.571 0.413 2.641 EWR [41] an k-a ^b re 91.78 1.30 8.94 2.330 0.330 2.227 EWR [24] an k-a ^b wi 99.99 1.68 8.34 2.355 6.947 1.402 EWR [41] an k-a ^b wi 95.667 1.97 8.45 2.447 0.750 2.661 EWR [24] an k-a ^b wi 96.67 1.97 8.45 2.447 0.750 2.661 EWR [24] an k-a ^b wi 1.33,24 2.18 7.76 1.765 0.011 0.177 EWR [24] an k-a ^b wi 1.33,23 3.50 0.667 0.066 0.067 0.128 EWR FT [246] an k-a ^b wi 1.633 0.461 0.330 0.934 EWR FT [246] an k-a ^b wi 1.632 1.613 7.33 0.666 0.067 0.334 EWR FT [248] an k-	⁵⁰ Ti+ ⁹³ Nb	106.76	1.81	10.16	1.788	0.438	0.580	EvR	[15]
Sh N=1*Pc 9190 1.33 9.41 2.414 5.177 2.836 Furk [10] Sh N=1*N 919.1 1.47 8.09 2.535 1.094 3.762 Furk [24] Sh N=1*N 95.43 1.88 8.49 0.397 0.392 1.773 EVR [24] Sh N=1*N 95.43 1.88 8.49 0.397 0.392 1.773 EVR [24] Sh N=1*N 95.43 2.62 7.94 1.336 0.658 1.144 EVR 2.461 Sh N=1*N 135.2 4.67 7.53 0.613 0.007 0.128 EVR+F 2.461 Sh N=1*Sn 105.50 7.01 7.83 0.613 0.030 EVR+FF 2.481 Sh N=1*Sn 165.79 5.35 9.12 2.300 0.133 C030 EVR+FF 2.481 Sh N=1*Sn 163.22 3.19 8.15 2.385 0.038 0.334 EVR+FF 2.481 Sh N=1	⁵⁸ Ni+ ⁵⁴ Fe	91.67	1.25	9.02	2.571	0.413	2.641	EvR	[241]
************************************	⁵⁸ Ni+ ⁵⁴ Fe	91.90	1.33	941	2.414	5.177	2,836	EvR	[40]
N:N: 90.19 1.47 8.09 2.535 1.094 *.702 DeR [41] **N:**N: 97.35 1.88 8.49 0.357 0.352 1.773 DeR [173] **N:**N: 96.37 1.92 8.45 0.367 0.352 1.773 DeR [24] **N:***C 108.30 2.62 7.94 1.336 0.658 2.104 Eve 2.42 *N:****C 133.59 2.55 8.33 0 0.109 0.300 Eve 2.46 *N:**** 135.52 4.67 7.53 0.613 0.067 0.128 Ever+FF 2.48 *N:*** 165.50 7.01 7.82 0.466 0.033 0.703 Ever+FF 2.48 *N:*** 165.71 3.91 8.71 2.83 0.033 0.733 Ever+FF 2.48 *N:*** 165.71 3.91 8.71 2.83 0.033 0.734 Ever+FF 2.48 <	⁵⁸ Ni+ ⁵⁴ Fe	91.78	1 30	8 94	2 330	0 3 3 0	2,000	EvR	[230]
num 97.05 1.42 8.05 2.135 1.054 1.042 DA DA <thda< th=""> DA DA <thda< th=""></thda<></thda<>	58 NI; 158 NI;	00.10	1.50	0.54	2.550	1.004	2,227	EVR	[233]
Thi Ni 9/.99 1.88 8.44 2.356 6.547 1.412 UNK [11] Mine Air 96.67 1.97 8.45 2.457 0.750 2.661 UNK [24] Mine Air 0.667 1.97 8.45 2.487 0.750 2.661 UNK 243 Mine Air 1.33.74 2.18 7.76 1.765 0.013 0.177 UNK 245 Mine Air 1.33.53 3.50 10.09 2.490 0.084 0.235 UNK 246 Mine Air 1.55.52 4.77 7.33 0.613 0.017 U.128 UNK+FF 248 Mine Air 1.65.50 7.01 7.82 0.466 0.033 0.138 UNK+FF 248 Mine Air 16.521 6.13 7.17 2.083 0.014 UZ1 UNK+FF 248 Mine Air 16.522 3.91 8.71 2.033 0.133 0.703 UNK+FF 248	58 NI - 60 NI	99.19	1.47	0.09	2.333	1.094	5.702	EVK	[242]
N+**Ni 95.43 1.98 8.49 0.397 0.392 1.773 EvR [178] ***N+**a 108.30 2.62 7.94 1.336 0.658 2.104 EvR 2.43] **N+**a 133.74 2.18 7.76 1.755 0.613 0.109 0.300 EvR 2.461 **N+**a 133.59 3.50 10.09 2.490 0.084 0.235 EvR 2.461 **N+a 165.50 7.01 7.52 0.613 0.067 0.128 EvR+FF 2.481 **N+***5 165.21 7.17 7.82 0.466 0.033 0.703 EvR+FF 2.481 **N+***5 165.71 3.91 8.71 2.833 0.013 0.703 EvR+FF 2.481 **N+***5 165.71 3.91 8.71 2.833 0.033 0.344 0.221 EvR+FF 2.481 **N+***5 165.71 3.91 8.71 2.037 0.332 1.341	50 N1+00 N1	97.99	1.68	8.34	2.356	6.947	1.402	EVK	[41]
***********************************	³⁸ Ni+ ⁶⁴ Ni	95.43	1.98	8.49	0.397	0.392	1.773	EvR	[178]
*******Ge (108.30) 2.62 7.94 1.336 0.658 2.104 EVR (244) ******** 133.89 2.55 8.33 0 0.109 0.300 EVR (245) ******** 138.99 2.55 8.33 0 0.109 0.300 EVR (246) ******** 155.52 4.67 7.33 0.613 0.067 0.128 EVR+FF (247) ******** 165.21 6.13 7.33 0 0.866 0.334 EVR+FF (248) ******** 163.22 3.19 8.17 2.330 0.133 0.734 EVR+FF (248) ******** 163.22 3.19 8.17 2.333 0.0301 0.014 EVR+FF (248) ******** 157.66 3.99 9.44 0 0.00101 EVR+FF (247) ******** 157.66 3.93 1.627 0.529 4.531 EVR (249) ************ <td< td=""><td>⁵⁸Ni+⁶⁴Ni</td><td>96.67</td><td>1.97</td><td>8.45</td><td>2.487</td><td>0.750</td><td>2.661</td><td>EvR</td><td>[243]</td></td<>	⁵⁸ Ni+ ⁶⁴ Ni	96.67	1.97	8.45	2.487	0.750	2.661	EvR	[243]
BN-B* 	⁵⁸ Ni+ ⁷⁴ Ge	108.30	2.62	7.94	1.336	0.658	2.104	EvR	[244]
************************************	⁵⁸ Ni+ ⁹⁰ Zr	133.74	2.18	7.76	1.765	0.031	0.177	EvR	[245]
*N.1***0% 195.50 15.0 10.09 2.490 0.084 0.235 FVR 2.65 *N.1***0% 165.50 7.01 7.32 0.613 0.067 0.128 EVR+FF 2.47 *N.1***5% 165.50 7.01 7.32 0.466 0.035 0.138 EVR+FF 2.481 *N.1***5% 163.21 3.13 8.15 2.330 0.134 EVR+FF 2.481 *N.1***5% 163.22 3.13 8.15 2.835 0.038 0.134 EVR+FF 2.481 *N.1**5% 163.22 5.63 8.93 0 0.225 1.596 EVR+FF 2.481 *N.1**5% 158.28 3.09 9.68 1.257 0.498 4.938 EVR *FF 2.491 *N.1**5% 136.03 2.97 8.33 1.627 0.522 1.381 EVR *FF 2.441 *N.1**5% 9.44 0 0.037 0.371 0.371 0.344 2.421 *N.1**5%	⁵⁸ Ni+ ⁹² Mo	138.89	2 55	8 33	0	0 109	0 300	FvR	[246]
International Los Los <thlos< th=""> <t< td=""><td>58 Ni+100 Mo</td><td>130.55</td><td>3 50</td><td>10.00</td><td>2 /00</td><td>0.084</td><td>0.235</td><td>EVR</td><td>[246]</td></t<></thlos<>	58 Ni+100 Mo	130.55	3 50	10.00	2 /00	0.084	0.235	EVR	[246]
	58 Ni + 112 Cm	150.55	3.50	7.50	2.450	0.004	0.233		[240]
	58 NI - 112 C	159.52	4.67	7.55	0.013	0.067	0.128	EVK+FF	[247]
******** 162.31 6.13 7.33 0 0.86 3.934 EVR+FF [248] ******* 163.22 3.19 8.15 2.330 0.133 0.703 EVR+FF [248] ******* 163.22 3.19 8.17 2.083 0.044 0.221 EVR+FF [248] ******* 155.6 EVR+FF [248] 3****** 158.28 3.09 9.64 0 0.001 EVR+FF [248] ****************** 158.28 3.09 9.68 1.235 0.488 4.938 EvR [249] ************************************	⁵⁸ Ni+ ¹¹² Sn	165.50	7.01	7.82	0.466	0.035	0.138	EVR+FF	[248]
³⁸ Ni ⁺¹¹⁸ Sn 165.79 5.35 9.12 2.330 0.133 0.703 EVR+FF [248] ³⁸ Ni ⁺¹¹⁸ Sn 163.21 3.19 8.15 2.835 0.038 0.134 EVR+FF [248] ³⁸ Ni ⁺¹⁴³ Sn 163.71 3.91 8.71 2.833 0.014 0.221 EVR+FF [248] ³⁸ Ni ⁺¹⁴³ Sn 157.46 3.99 9.44 0 0.011 0.001 EVR+FF [247] ³⁸ Ni ⁺¹⁴³ Sn 158.28 3.09 9.68 1.235 0.498 4.938 EVR [250] ⁴⁹ Ni ⁴⁴ Sn 158.28 3.09 9.68 1.235 0.232 1.381 EVR [244] ^{69 Ni⁴⁴Ni 9.499 1.47 1.0.16 1.699 0.515 2.542 EVR [272] ^{61 Ni⁴⁴Ni 9.445 1.23 9.69 1.908 1.919 7.259 EVR [272] ^{61 Ni⁴⁴Ni 9.445 1.23 9.60 0.167 0.461 EVR}}}	⁵⁸ Ni+ ¹¹⁴ Sn	162.31	6.13	7.33	0	0.866	3.934	EvR+FF	[248]
************************************	⁵⁸ Ni+ ¹¹⁶ Sn	166.79	5.35	9.12	2.330	0.133	0.703	EvR+FF	[248]
Sin Hards 163.71 3.91 8.71 2.083 0.044 0.221 EvR+FF [248] Sin Hards 150.20 563 8.93 0 0.225 1.596 EvR+FF [247] Sin Hards 157.46 3.99 9.44 0 0.001 0.001 EvR +FF [247] Sin Hards 158.28 3.09 9.68 1.257 0.529 4.631 EvR [250] Sin Hards 136.03 2.97 8.33 1.627 0.532 1.381 EvR [244] Sin Hards 94.99 1.47 1.016 1.699 0.515 2.542 EvR [274] Sin Hards 9.374 1.30 8.57 2.605 0.419 1.10 EvR [253] Sin Hards 9.374 1.32 9.69 1.908 1.919 7.259 EvR [253] Sin Hards 9.374 0.303 1.269 8.01 1.533 0.855 2.461 EvR	⁵⁸ Ni+ ¹¹⁸ Sn	163.22	3.19	8.15	2.835	0.038	0.134	EvR+FF	[248]
SN H ⁺¹⁴ Sn 162.02 5.63 8.93 0 0.325 1.596 EVR+FF [248] SN H ⁺¹⁴ Sn 152.02 5.63 8.93 0 0.325 1.596 EVR+FF [247] SN H ⁺¹⁴ Sn 152.28 3.09 9.44 0 0.01 0.001 EVR+FF [248] SN H ⁺¹⁴ Sn 152.28 1.38 7.45 1.597 0.529 4.631 EVR [251] 6 ^N N ⁺¹⁰⁰ M0 16.03 2.97 8.33 1.627 0.532 1.381 EVR [251] 6 ^N N ⁺¹⁰⁰ M1 94.99 1.47 10.16 1.699 0.515 2.542 EVR [178] 6 ^N N ⁺¹⁰⁰ M1 94.45 1.23 9.69 1.908 1.919 7.259 EVR [252] 6 ^N N ⁺¹⁰⁰ M1 94.45 1.23 9.69 1.673 0.464 EVR [253] 6 ^N N ⁺¹⁰⁰ M2 131.55 3.04 9.41 0 0.400 1.219 EVR [253] <tr< td=""><td>⁵⁸Ni+¹²⁰Sn</td><td>163.71</td><td>3.91</td><td>8.71</td><td>2.083</td><td>0.044</td><td>0.221</td><td>EvR+FF</td><td>[248]</td></tr<>	⁵⁸ Ni+ ¹²⁰ Sn	163.71	3.91	8.71	2.083	0.044	0.221	EvR+FF	[248]
S ¹ N1+ ¹² Sn 157.46 3.99 9.44 0 0.001 0.001 EVR+FF [247] S ¹ N1+ ¹² Sn 158.28 3.09 9.68 1.235 0.498 4.938 EVR [249] S ¹ N1+ ¹² Sn 158.28 3.09 9.68 1.235 0.498 4.938 EVR [249] S ¹ N1+ ¹⁰ Sn 166.03 2.97 8.33 1.627 0.532 1.381 EVR [241] S ¹ N1+ ¹⁰ N1 94.49 1.47 10.16 1.699 0.515 2.542 EVR [178] S ¹ N1+ ⁴⁰ N1 94.45 1.23 9.69 1.908 1.919 7.259 EVR [241] S ¹ N1+ ⁴⁰ N1 94.45 1.23 8.40 0.217 0.333 1.269 EVR [253] S ¹ N1+ ⁴⁰ N1 92.43 1.32 8.40 0.167 0.169 0.605 EVR [253] S ¹ N1+ ⁴⁰ N1 92.43 0.32 0.733 0.400 1.219 EVR [246]	⁵⁸ Ni+ ¹²⁴ Sn	162.02	5.63	8.93	0	0 325	1 596	FvR+FF	[248]
n1,1 10,1 3.93 3.74 0 0.001 0.001 0.001 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.0137 0.037<	58 Ni+124 Sp	157.46	3.00	0.44	ů 0	0.001	0.001	EVICTI	[247]
TNP 18.2.8 3.09 9.08 1.233 0.498 4.938 EVR [249] 60N14 ⁴ 07 136.03 2.97 8.33 1.627 0.532 1.381 EvR [251] 60N14 ⁴⁰ Ni 94.98 3.03 7.91 0 0.037 EvR [244] 6 ⁴ N14 ⁴⁵ Ni 94.99 1.47 10.16 1.699 0.515 2.542 EvR [178] 6 ⁴ N14 ⁴⁵ Ni 94.45 1.23 9.69 1.908 1.919 7.259 EvR [274] 6 ⁴ N14 ⁴⁶ Ni 94.45 1.23 9.69 1.908 1.919 7.259 EvR [274] 6 ⁴ N14 ⁴⁶ Ni 94.45 1.23 9.69 1.553 0.856 2.461 EvR [223] 6 ⁴ N14 ⁴⁰ Xi 13.86 3.04 9.41 0 0.000 1.065 EvR [224] 6 ⁶ N14 ⁴⁰ No 13.456 3.04 9.41 0 0.000 0.000 EvR+FF [248]	58 NI + 124 C-	157.40	3.99	9.44	1 225	0.001	0.001	EVRTIT E-D	[247]
Only 1-00 129_25 1.58 7.45 1.59/ 0.529 4.631 EVR [250] 6 ⁶ N1+ ¹⁰⁰ Mo 136.03 2.97 8.33 1.677 0.532 1.381 EVR [241] 6 ⁶ N1+ ⁴⁰ Mi 94.99 1.47 10.16 1.699 0.515 2.542 EVR [178] 6 ⁶ N1+ ⁴⁰ Mi 93.74 1.30 8.57 2.605 0.419 1.110 EVR [241] 6 ⁶ N1+ ⁴⁰ Mi 93.74 1.32 9.69 1.908 1.919 7.259 EVR [272] 6 ⁶ N1+ ⁴⁰ Mi 92.43 1.32 8.60 0.217 0.333 1.269 EVR [253] 6 ⁶ N1+ ⁴⁰ Ce 10.61 1.79 7.50 1.553 0.856 2.461 EVR [253] 6 ⁶ N1+ ⁴⁰ Dr 135.86 3.04 9.41 0 0.400 1.219 EVR [246] 6 ⁶ N1+ ⁴⁰ Dr 135.86 3.04 9.41 0 0.400 0.913 EVR+FF <t< td=""><td>50 NI+ 5Π</td><td>158.28</td><td>3.09</td><td>9.68</td><td>1.235</td><td>0.498</td><td>4.938</td><td>EVK</td><td>[249]</td></t<>	50 NI+ 5Π	158.28	3.09	9.68	1.235	0.498	4.938	EVK	[249]
⁶⁰ Ni+ ⁸⁰ Ni 96.48 3.03 7.97 8.33 1.627 0.532 1.381 EvR [251] ⁶⁰ Ni+ ⁸⁵ Ni 96.48 3.03 7.91 0 0.037 0.037 EvR [244] ⁶¹ Ni+ ⁴⁵ Ni 94.99 1.47 10.16 1.699 0.515 2.542 EvR [178] ⁶⁴ Ni+ ⁴⁶ Ni 94.53 1.32 8.60 0.217 0.333 1.269 EvR [252] ⁶⁴ Ni+ ⁴⁶ C 104.61 1.79 7.50 1.53 0.856 2.461 EvR [253] ⁶⁴ Ni+ ⁴⁶ C 104.53 0.453 0.456 2.441 EvR [253] ⁶⁴ Ni+ ⁴⁰ Dr 135.86 3.04 9.41 0 0.400 1.219 EvR [246] ⁶⁴ Ni+ ⁴⁰ Dr 135.86 3.04 9.41 0 0.400 0.246 0.979 EvR [248] ⁶⁴ Ni+ ¹¹⁵ Sn 158.47 3.92 10.02 0 0.800 0.843 EvR+FF [2	⁶⁰ N1+ ⁸⁵ Y	129.25	1.58	7.45	1.597	0.529	4.631	EVR	[250]
6 ⁴ Ni+ ⁴⁸ Ni 96.48 3.03 7.91 0 0.037 0.037 EvR 244 6 ⁴ Ni+ ⁴⁶ Ni 94.09 1.47 1.06 1.699 0.515 2.542 EvR [178] 6 ⁴ Ni+ ⁴⁶ Ni 93.74 1.30 8.57 2.605 0.419 1.110 EvR [24] 6 ⁶ Ni+ ⁴⁶ Ni 92.43 1.32 8.60 0.217 0.33 1.269 EvR [252] 6 ⁶ Ni+ ⁴⁶ Ni- 1.461 1.79 7.50 1.553 0.856 2.461 EvR [24] 6 ⁶ Ni+ ⁴⁰ 2r 131.72 3.09 7.39 0.167 0.169 0.605 EvR [253] 6 ⁶ Ni+ ⁴⁰ 2r 135.86 3.04 9.41 0 0.400 1.219 EvR [246] 6 ⁶ Ni+ ⁴⁰ 2n 135.85 3.04 9.41 0.62 0.979 EvR+FF [248] 6 ⁶ Ni+ ¹¹⁴ 2s 157.61 2.69 8.64 3.62 0.913 EvR+FF [248] 6	⁶⁰ Ni+ ¹⁰⁰ Mo	136.03	2.97	8.33	1.627	0.532	1.381	EvR	[251]
6 ⁴ Ni+6 ⁴ Ni 94.99 1.47 10.16 1.699 0.515 2.542 EVR [178] 6 ⁴ Ni+6 ⁴ Ni 93.74 1.30 8.57 2.605 0.419 1.110 EVR [244] 6 ⁴ Ni+6 ⁴ Ni 94.45 1.23 9.69 1.908 1.919 7.259 EVR [252] 6 ⁴ Ni+6 ⁴ Ni 92.43 1.32 8.40 0.217 0.333 1.269 EVR [253] 6 ⁴ Ni+6 ⁴ Ni 92.43 1.32 8.40 0.217 0.333 1.269 EVR [253] 6 ⁴ Ni+6 ⁴ Di 131.72 3.09 7.39 0.167 0.169 0.605 EVR [246] 6 ⁴ Ni+6 ⁴ Di 135.86 3.04 9.71 0.793 0.246 0.979 EVR [246] 6 ⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EVR+FF [248] 6 ⁴ Ni+ ¹¹² Sn 158.47 3.92 1.002 0 0.800 0.843 EVR+FF <td>⁶⁴Ni+⁵⁸Ni</td> <td>96.48</td> <td>3.03</td> <td>7.91</td> <td>0</td> <td>0.037</td> <td>0.037</td> <td>EvR</td> <td>[244]</td>	⁶⁴ Ni+ ⁵⁸ Ni	96.48	3.03	7.91	0	0.037	0.037	EvR	[244]
6 ⁴ Ni+ ³⁴ Ni 93.74 1.30 8.57 2.605 0.419 1.110 EvR 124 6 ⁴ Ni+ ³⁴ Ni 94.45 1.23 9.69 1.908 1.919 7.259 EvR [725] 6 ⁴ Ni+ ³⁴ Ni 92.43 1.32 8.40 0.217 0.333 1.269 EvR [252] 6 ⁶ Ni+ ³⁴ Ni 92.43 1.32 8.40 0.217 0.333 1.269 EvR [253] 6 ⁶ Ni+ ³⁴ Gr 13.62 0.461 1.79 7.50 1.53 0.856 2.461 EvR [253] 6 ⁶ Ni+ ³⁴ Dr 135.86 3.04 9.41 0 0.400 1.219 EvR [246] 6 ⁶ Ni+ ¹¹⁰ Sr 157.61 2.69 8.64 3.062 0.195 0.913 EvR+FF [248] 6 ⁶ Ni+ ¹¹⁴ Sr 158.55 4.08 9.37 0 0.000 0.000 EvR+FF [248] 6 ⁶ Ni+ ¹¹⁴ Sr 158.57 3.54 9.33 0 0.336 0.172	⁶⁴ Ni+ ⁶⁴ Ni	94.99	1.47	10.16	1.699	0.515	2.542	EvR	[178]
6 ⁴ Ni+ ⁴⁶ Ni 94.45 1.23 9.69 1.908 1.919 7.259 EvR 1.79 6 ⁴ Ni+ ⁴⁶ Ni 92.43 1.32 8.40 0.217 0.333 1.269 EvR [252] 6 ⁴ Ni+ ⁴⁶ C 104.61 1.79 7.50 1.553 0.856 2.461 EvR [244] 6 ⁴ Ni+ ⁴⁶ Zr 131.72 3.09 7.39 0.167 0.169 0.605 EvR [253] 6 ⁴ Ni+ ⁴⁶ Zr 128.96 2.39 8.09 1.763 0.173 0.444 EvR [253] 6 ⁴ Ni+ ⁴⁰ Mo 134.56 3.34 7.78 0.793 0.246 0.979 EvR [246] 6 ⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁵ Sn 158.47 3.92 10.02 0 0.180 0.843 EvR+FF [248] 6 ⁴ Ni+ ¹¹² Sn 156.44 3.54 9.33 0 0.036 0.172 EvR+FF <td>⁶⁴Ni+⁶⁴Ni</td> <td>93.74</td> <td>1.30</td> <td>8 57</td> <td>2,605</td> <td>0 4 1 9</td> <td>1.110</td> <td>EvR</td> <td>244</td>	⁶⁴ Ni+ ⁶⁴ Ni	93.74	1.30	8 57	2,605	0 4 1 9	1.110	EvR	244
	64 Ni+64 Ni	94.45	1.33	9.69	1 008	1 0 1 0	7 250	EVP	[170]
	64NI: 64NI:	02.42	1.20	9.40	0.017	0.222	1,255	EvD	[175]
Orn Mark Ge 104.61 1.79 7.50 1.53 0.856 2.461 EVR [243] 6 ⁴ Ni + ³² Zr 131.72 3.09 7.39 0.167 0.169 0.605 EVR [253] 6 ⁴ Ni + ³² Zr 131.72 3.09 7.39 0.167 0.400 1.219 EVR [263] 6 ⁶ Ni + ³² Zr 135.86 3.04 9.41 0 0.400 1.219 EVR [246] 6 ⁶ Ni + ¹⁰⁰ Mo 134.56 3.44 7.78 0.793 0.246 0.979 EVR [248] 6 ⁶ Ni + ¹¹⁴ Sn 158.87 0.69 8.64 3.062 0.195 0.913 EVR+FF [248] 6 ⁴ Ni + ¹¹⁶ Sn 158.47 3.92 10.02 0 0.180 0.843 EVR+FF [248] 6 ⁴ Ni + ¹²⁰ Sn 156.44 3.54 9.33 0 0.036 0.172 EVR+FF [248] 6 ⁴ Ni + ¹²² Sn 154.87 2.85 9.60 0 0.034 0.172 EVR	64	92.43	1.32	8.40	0.217	0.333	1.209	EVK	[252]
On Ni = 22 r 131.72 3.09 7.39 0.167 0.169 0.605 EVR [253] 64 Ni = 56 r 128.96 2.39 8.09 1.763 0.173 0.444 EVR [253] 64 Ni = 56 r 135.86 3.04 9.41 0 0.400 1.219 EVR [246] 64 Ni = 100 Mo 134.56 3.34 7.78 0.793 0.246 0.979 EVR [246] 64 Ni = 113 N 157.61 2.69 8.64 3.062 0.195 0.913 EVR +FF [248] 64 Ni = 113 N 157.61 3.64 9.37 0 0.000 0.000 EVR +FF [248] 64 Ni = 118 N 157.41 4.31 9.36 0 0.4481 0.757 EVR +FF [248] 64 Ni = 112 S 155.99 2.26 9.41 3.600 0.018 0.083 EVR +FF [248] 64 Ni = 122 S 1.57 0.585 1.154 EVR [256] 64 Ni = 12	⁶⁴ Ni ⁺ , ⁴ Ge	104.61	1.79	7.50	1.553	0.856	2.461	EVR	[244]
6 ⁴ Ni+ ³⁶ Zr 128.96 2.39 8.09 1.763 0.173 0.444 EvR [253] 6 ⁴ Ni+ ³⁰ Mo 135.86 3.04 9.41 0 0.400 1.219 EvR [246] 6 ⁴ Ni+ ¹⁰⁰ Mo 134.55 3.34 7.78 0.793 0.246 0.979 EvR [248] 6 ⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁴ Sn 158.85 4.08 9.37 0 0.000 0.000 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁶ Sn 157.41 4.31 9.36 0 0.481 0.757 EvR+FF [248] 6 ⁴ Ni+ ¹²² Sn 156.44 3.54 9.33 0 0.036 0.172 EvR+FF [248] 6 ⁴ Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0.011 0.044 EvR [257] 6 ⁴ Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0.011 0.044 EvR [258] <tr< td=""><td>⁶⁴Ni+⁹²Zr</td><td>131.72</td><td>3.09</td><td>7.39</td><td>0.167</td><td>0.169</td><td>0.605</td><td>EvR</td><td>[253]</td></tr<>	⁶⁴ Ni+ ⁹² Zr	131.72	3.09	7.39	0.167	0.169	0.605	EvR	[253]
6 ⁴ Ni+ ¹⁰² Mo 133.86 3.04 9.41 0 0.400 1.219 EvR [246] 6 ⁴ Ni+ ¹⁰² Mo 134.56 3.34 7.78 0.793 0.246 0.979 EvR [246] 6 ⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁴ Sn 158.85 4.08 9.37 0 0.000 0.000 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁶ Sn 158.47 3.92 10.02 0 0.481 0.757 EvR+FF [248] 6 ⁴ Ni+ ¹¹⁸ Sn 157.41 4.31 9.36 0 0.363 0.172 EvR+FF [248] 6 ⁴ Ni+ ¹²⁴ Sn 156.44 3.54 9.33 0 0.014 0.083 EvR+FF [248] 6 ⁴ Ni+ ¹²⁴ Sn 156.43 3.54 9.33 0 0.336 0.172 EvR +FF [248] 6 ⁴ Ni+ ¹²⁴ Sn 156.41 4.39 7.58 0 0.011 0.044 EvR <td>⁶⁴Ni+⁹⁶Zr</td> <td>128.96</td> <td>2.39</td> <td>8.09</td> <td>1.763</td> <td>0.173</td> <td>0.444</td> <td>EvR</td> <td>[253]</td>	⁶⁴ Ni+ ⁹⁶ Zr	128.96	2.39	8.09	1.763	0.173	0.444	EvR	[253]
⁶⁴ Ni+ ¹⁰⁰ Mo 134.56 3.34 7.78 0.793 0.246 0.979 EvR [246] ⁶⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EvR+FF [248] ⁶⁴ Ni+ ¹¹⁴ Sn 158.85 4.08 9.37 0 0.000 0.000 EvR+FF [248] ⁶⁴ Ni+ ¹¹⁶ Sn 158.47 3.92 10.02 0 0.180 0.843 EvR+FF [248] ⁶⁴ Ni+ ¹¹⁶ Sn 157.41 4.31 9.36 0 0.036 0.178 EvR+FF [248] ⁶⁴ Ni+ ¹²⁰ Sn 156.44 3.54 9.33 0 0.036 0.178 EvR+FF [248] ⁶⁴ Ni+ ¹²² Sn 155.99 2.26 9.41 3.600 0.018 0.083 EvR+FF [248] ⁷⁴ Ce+ ⁷⁴ Ce 122.45 3.47 8.21 1.515 0.585 1.154 EvR [256] ⁸¹ Br+ ⁹⁴ Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [257] ⁸⁶ Kr ¹⁷⁶ Ce 131.48 2.43 9.27 2	⁶⁴ Ni+ ⁹² Mo	135.86	3.04	9.41	0	0.400	1.219	EvR	[246]
⁶⁴ Ni+ ¹¹² Sn 157.61 2.69 8.64 3.062 0.195 0.913 EVR+FF [248] ⁶⁴ Ni+ ¹¹⁴ Sn 158.85 4.08 9.37 0 0.000 0.000 EVR+FF [248] ⁶⁴ Ni+ ¹¹⁶ Sn 158.847 3.92 10.02 0 0.180 0.843 EVR+FF [248] ⁶⁴ Ni+ ¹¹³ Sn 157.41 4.31 9.36 0 0.481 0.757 EVR+FF [248] ⁶⁴ Ni+ ¹¹² Sn 156.44 3.54 9.33 0 0.036 0.178 EVR+FF [248] ⁶⁴ Ni+ ¹²² Sn 155.99 2.26 9.41 3.600 0.018 0.083 EVR+FF [248] ⁶⁴ Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0 0.034 0.172 EVR+FF [248] ⁶⁴ Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0 0.011 0.044 EVR [256] ⁸⁶ Kr+ ⁷⁶ Ge 133.71 2.88 9.10 1.737 7.133 7.799 EVR [258] ¹²⁴ Sn+ ⁴⁸ Ca 131.69 1.80 9.99 <td< td=""><td>⁶⁴Ni+¹⁰⁰Mo</td><td>134.56</td><td>3.34</td><td>7.78</td><td>0.793</td><td>0.246</td><td>0.979</td><td>EvR</td><td>[246]</td></td<>	⁶⁴ Ni+ ¹⁰⁰ Mo	134.56	3.34	7.78	0.793	0.246	0.979	EvR	[246]
1.11.11.00.040.040.000.100.100.100.1010.110.0000.0000.0000.0000.0000.0000.0000.0000.0010.0010.0010.0010.0010.0010.0010.0010.0010.0010.0010.010.0010.010.0010.010.001	⁶⁴ Ni+ ¹¹² Sn	157.61	2 69	8 64	3 062	0 195	0 913	FvR+FF	[248]
Nr51138.34.009.3700.0000.0000.0000.0000.0070.0071245164Ni+16Sn158.473.9210.0200.1800.8410.757EVR+FF[248]64Ni+120Sn156.443.549.3300.0360.178EVR+FF[248]64Ni+122Sn155.992.269.413.6000.0180.083EVR+FF[248]64Ni+124Sn154.872.859.6000.0340.172EVR+FF[248]64Ni+124Sn154.872.859.6000.0340.172EVR+FF[248]81Br+94Zr156.414.397.5800.0110.044EVR[257]86Kr+76Ge131.482.439.272.1011.9600.587EVR[258]86Kr+76Ga131.691.809.991.2732.5091.601EVR[259]124Sn+48Ca113.691.809.991.2732.5091.601EVR[259]132Sn+40Ca115.242.9811.061.2411.2352.956EVR[259]132Sn+64Ni151.095.838.2300.2210.418EVR+FF[261]132Sn+64Ni151.095.838.2300.5310.426EVR[261]132Sn+64Ni15.613.0811.973.8650.0900.198EVR+FF[262]132Sn+64Ni15.613.0811.973.865	64 Ni+114 Cp	157.01	2.05	0.04	0.002	0.155	0.010	EVICTI	[240]
	64 NI 116 C-	150.03	4.00	J.J/	0	0.000	0.000		[240]
⁶⁴ Ni+ ¹¹⁰ Sn 157.41 4.31 9.36 0 0.481 0.757 EVR+FF [254,255] ⁶⁴ Ni+ ¹²⁰ Sn 156.44 3.54 9.33 0 0.036 0.178 EVR+FF [248] ⁶⁴ Ni+ ¹²² Sn 155.99 2.26 9.41 3.600 0.018 0.083 EVR+FF [248] ⁶⁴ Ni+ ¹²² Sn 154.87 2.85 9.60 0 0.034 0.172 EVR+FF [248] ⁷⁴ Ce+ ⁷⁴ Ge 122.45 3.47 8.21 1.515 0.585 1.154 EvR [256] ⁸¹ Br+ ⁹⁴ Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [258] ⁸⁶ Kr ⁷⁰ Ge 133.71 2.88 9.10 1.737 7.133 7.799 EvR [258] ¹²⁴ Sn+ ⁴⁴ Ca 113.18 2.38 9.66 0.889 0.582 0.362 EvR [259] ¹²⁴ Sn+ ⁴⁴ Ca 113.69 1.80 9.99 1.273 2.509 1.601 Ev	64NF 118 C	158.47	3.92	10.02	0	0.180	0.843	EVK+FF	[248]
b ⁴ Ni+ ¹²⁰ Sn 156.44 3.54 9.33 0 0.036 0.178 EvR+FF [248] 6 ⁴ Ni+ ¹²² Sn 155.99 2.26 9.41 3.600 0.018 0.083 EvR+FF [248] 6 ⁴ Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0 0.034 0.172 EvR+FF [248] 7 ⁴ Ge+ ⁷⁴ Ge 122.45 3.47 8.21 1.515 0.585 1.154 EvR [256] ⁸¹ Br+ ⁹⁴ Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [258] ⁸⁶ Kr+ ⁷⁶ Ge 131.48 2.43 9.27 2.101 1.960 0.587 EvR [258] ¹²⁴ Sn+ ⁴⁰ Ca 113.18 2.38 9.66 0.889 0.582 0.362 EvR [259] ¹²⁴ Sn+ ⁴⁰ Ca 113.69 1.80 9.99 1.273 2.509 1.601 EvR [259] ¹²⁴ Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR KFF [260] ¹³² Sn+ ⁵⁴ Ni 151.09 5.83 8.23 <t< td=""><td>⁶⁴Ni+¹¹⁸Sn</td><td>157.41</td><td>4.31</td><td>9.36</td><td>0</td><td>0.481</td><td>0.757</td><td>EvR+FF</td><td>254,255</td></t<>	⁶⁴ Ni+ ¹¹⁸ Sn	157.41	4.31	9.36	0	0.481	0.757	EvR+FF	254,255
64 Ni+ ¹²² Sn 155.99 2.26 9.41 3.600 0.018 0.083 EvR+FF [248] 64 Ni+ ¹²⁴ Sn 154.87 2.85 9.60 0 0.034 0.172 EvR+FF [248] 74 Ge+ ⁷⁴ Ge 122.45 3.47 8.21 1.515 0.585 1.154 EvR [256] 8 ¹ Br+ ⁹⁴ Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [257] 8 ⁶ Kr+ ⁷⁰ Ge 133.71 2.88 9.10 1.737 7.133 7.799 EvR [258] 8 ⁶ Kr+ ⁷⁶ Ge 131.48 2.43 9.27 2.101 1.960 0.582 0.362 EvR [258] 1 ¹²⁴ Sn+ ⁴⁰ Ca 113.18 2.38 9.66 0.889 0.582 0.362 EvR [259] 1 ¹²⁴ Sn+ ⁴⁰ Ca 113.69 1.80 9.99 1.273 2.509 1.601 EvR [259] 1 ¹²⁴ Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR +FF [260] 1 ¹³² Sn+ ⁶⁴ Ni 151.09 5.83	⁶⁴ Ni+ ¹²⁰ Sn	156.44	3.54	9.33	0	0.036	0.178	EvR+FF	[248]
⁶⁴ Ni+ ¹²⁴ Sn154.872.859.6000.0340.172EvR+FF[248] ⁷⁴ Ge+ ⁷⁴ Ge122.453.478.211.5150.5851.154EvR[256] ⁸¹ Br+ ⁹⁴ Zr156.414.397.5800.0110.044EvR[257] ⁸⁶ Kr+ ⁷⁰ Ge133.712.889.101.7377.1337.799EvR[258] ⁸⁶ Kr+ ⁷⁶ Ge131.482.439.272.1011.9600.587EvR[258] ¹²⁴ Sn+ ⁴⁰ Ca113.182.389.660.8890.5820.362EvR[259] ¹²⁴ Sn+ ⁴⁰ Ca113.691.809.991.2732.5091.601EvR[259] ¹²⁴ Sn+ ⁴⁰ Ca115.242.9811.061.2411.2352.956EvR[259] ¹²³ Sn+ ⁴⁰ Ni150.454.2611.3200.1520.199EvR+FF[260] ¹³² Sn+ ⁶⁴ Ni151.095.838.2300.2210.418EvR[261] ¹³² Sn+ ⁶⁴ Ni157.613.0811.973.8650.0900.198EvR+FF[262] ¹³⁴ Te+ ⁶⁴ Ni164.212.679.221.8160.3170.455EvR[263] ²⁰⁸ Pb+ ⁵⁰ Ti194.552.227.832.7910.7970.675FF(48]	⁶⁴ Ni+ ¹²² Sn	155.99	2.26	9.41	3.600	0.018	0.083	EvR+FF	[248]
⁷⁴ Ge ⁺⁷⁴ Ge 122.45 3.47 8.21 1.515 0.585 1.154 EvR [256] ⁸¹ Br+ ⁹⁴ Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [257] ⁸⁶ Kr+ ⁷⁰ Ge 133.71 2.88 9.10 1.737 7.133 7.799 EvR [258] ⁸⁶ Kr+ ⁷⁶ Ge 131.48 2.43 9.27 2.101 1.960 0.587 EvR [258] ¹²⁴ Sn+ ⁴⁰ Ca 113.18 2.38 9.66 0.889 0.582 0.362 EvR [259] ¹²⁴ Sn+ ⁴⁰ Ca 113.69 1.80 9.99 1.273 2.509 1.601 EvR [259] ¹²⁴ Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR [259] ¹³² Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR+FF [260] ¹³² Sn+ ⁵⁴ Ni 159.45 4.26 11.32 0.708 0.152 0.199 EvR+FF [261] ¹³² Sn+ ⁶⁴ Ni 151.09 5.83 8.23	⁶⁴ Ni+ ¹²⁴ Sn	154.87	2.85	9.60	0	0.034	0.172	EvR+FF	248
81Br+94Zr 156.41 4.39 7.58 0 0.011 0.044 EvR [257] 86Kr+ ⁷⁰ Ge 133.71 2.88 9.10 1.737 7.133 7.799 EvR [258] 86Kr+ ⁷⁶ Ge 131.48 2.43 9.27 2.101 1.960 0.587 EvR [258] 124Sn+ ⁴⁰ Ca 113.18 2.38 9.66 0.889 0.582 0.362 EvR [259] 124Sn+ ⁴⁰ Ca 113.69 1.80 9.99 1.273 2.509 1.601 EvR [259] 132Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR [259] 1 ³² Sn+ ⁴⁰ Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR [259] 1 ³² Sn+ ⁴⁰ Ca 115.24 2.98 1.061 1.241 1.235 2.956 EvR [261] 1 ³² Sn+ ⁶⁴ Ni 151.09 5.83 8.23 0 0.221 0.418 EvR [261] 1 ³² Sn+ ⁶⁴ Ni 157.61 3.08 11.97 3.865 <	⁷⁴ Ce+ ⁷⁴ Ce	122 45	3 47	8 2 1	1 5 1 5	0.585	1 154	FvR	[256]
h1 + 21 150,41 4.35 7.38 0 0.011 0.044 EVR [257] 86 Kr+70 Ge 133,71 2.88 9.10 1.737 7.133 7.799 EvR [258] 86 Kr+76 Ge 131,48 2.43 9.27 2.101 1.960 0.587 EvR [259] 124 Sn+40 Ca 113,18 2.38 9.66 0.889 0.582 0.362 EvR [259] 124 Sn+48 Ca 113.69 1.80 9.99 1.273 2.509 1.601 EvR [259] 132 Sn+40 Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR [259] 132 Sn+40 Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR (261) 132 Sn+40 Ca 115.24 2.98 11.06 1.241 1.235 2.956 EvR (261) 132 Sn+64 Ni 151.09 5.83 8.23 0 0.221 0.418 EvR (262) 132 Sn+64 Ni 157.61 3.08 11.97 3.865 0.090 0.198 EvR+FF <td>⁸¹ Pr+⁹⁴7r</td> <td>156 /1</td> <td>4 20</td> <td>7.59</td> <td>0</td> <td>0.011</td> <td>0.044</td> <td>EVR</td> <td>[250]</td>	⁸¹ Pr+ ⁹⁴ 7r	156 /1	4 20	7.59	0	0.011	0.044	EVR	[250]
N° GC133.7 12.889.101.7377.1337.799EVR[258] 86 Kr+76Ge131.482.439.272.1011.9600.587EvR[259] 124 Sn+40Ca113.182.389.660.8890.5820.362EvR[259] 124 Sn+40Ca113.691.809.991.2732.5091.601EvR[259] 122 Sn+40Ca115.242.9811.061.2411.2352.956EvR[259] 122 Sn+58Ni159.454.2611.320.7080.1520.199EvR+FF[260] 122 Sn+64Ni151.095.838.2300.2210.418EvR[261] 132 Sn+64Ni157.613.0811.973.8650.0900.198EvR+FF[262] 134 Te+44OCa116.792.288.7900.5310.426EvR[263] 134 Te+64Ni164.212.679.221.8160.3170.455EvR[264] 208 Pb+50Ti194.552.227.832.7910.7970.675FF[48]	86Vr+70Co	100.41	1.00	7.50	1 7 7 7	0.011	7 700	EVIN	[257]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NT Ge	100./1	2.88	9.10	1./3/	1.022	1.199	EVK	[258]
124 Sn+"*Ca113.182.389.660.8890.5820.362EvR[259] 1^{124} Sn+ ⁴⁸ Ca113.691.809.991.2732.5091.601EvR[259] 1^{32} Sn+ ⁴⁰ Ca115.242.9811.061.2411.2352.956EvR * [260] 1^{32} Sn+ ⁵⁸ Ni159.454.2611.320.7080.1520.199EvR+FF[260] 1^{32} Sn+ ⁶⁴ Ni151.095.838.2300.2210.418EvR * [261] 1^{32} Sn+ ⁶⁴ Ni157.613.0811.973.8650.0900.198EvR+FF[262] 1^{34} Te+ ⁴⁰ Ca116.792.288.7900.5310.426EvR[263] 1^{34} Te+ ⁶⁴ Ni164.212.679.221.8160.3170.455EvR[264] 2^{08} Pb+ ⁵⁰ Ti194.552.227.832.7910.7970.675FF[48]	⁵⁵ Kr+ ⁷⁵ Ge	131.48	2.43	9.27	2.101	1.960	0.587	EVR	[258]
124 Sn+48 Ca113.691.809.991.2732.5091.601EvR[259]132 Sn+40 Ca115.242.9811.061.2411.2352.956EvR[259]132 Sn+58 Ni159.454.2611.320.7080.1520.199EvR+FF[260]132 Sn+64 Ni151.095.838.2300.2210.418EvR[261]132 Sn+64 Ni157.613.0811.973.8650.0900.198EvR+FF[262]134 Te+40 Ca116.792.288.7900.5310.426EvR[263]134 Te+64 Ni164.212.679.221.8160.3170.455EvR[264]208 Pb+50 Ti194.552.227.832.7910.7970.675FF[48]	¹²⁴ Sn+ ⁴⁰ Ca	113.18	2.38	9.66	0.889	0.582	0.362	EvR	[259]
132 Sn+40 Ca115.242.9811.061.2411.2352.956EvR[259]132 Sn+58 Ni159.454.2611.320.7080.1520.199EvR+FF[260]132 Sn+64 Ni151.095.838.2300.2210.418EvR[261]132 Sn+64 Ni157.613.0811.973.8650.0900.198EvR+FF[262]134 Te+40 Ca116.792.288.7900.5310.426EvR[263]134 Te+64 Ni164.212.679.221.8160.3170.455EvR[264]208 Pb+50 Ti194.552.227.832.7910.7970.675FF[48]	¹²⁴ Sn+ ⁴⁸ Ca	113.69	1.80	9.99	1.273	2.509	1.601	EvR	[259]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹³² Sn+ ⁴⁰ Ca	115.24	2.98	11.06	1.241	1.235	2.956	EvR	[259]
132 Sn+64 Ni151.095.838.2300.210.418EvR[261]132 Sn+64 Ni157.613.0811.973.8650.0900.198EvR+FF[262]134 Te+40 Ca116.792.288.7900.5310.426EvR[263]134 Te+64 Ni164.212.679.221.8160.3170.455EvR[264]208 Pb+50 Ti194.552.227.832.7910.7970.675FF[48]	¹³² Sn+ ⁵⁸ Ni	159.45	4.26	11.32	0.708	0.152	0.199	EvR+FF	[260]
132 Sn+64Ni 157.61 3.05 6.22 0.416 EVR [201] 132 Sn+64Ni 157.61 3.08 11.97 3.865 0.090 0.198 EvR+FF [262] 134 Te+ ⁴⁰ Ca 116.79 2.28 8.79 0 0.531 0.426 EvR [263] 134 Te+ ⁶⁴ Ni 164.21 2.67 9.22 1.816 0.317 0.455 EvR [264] 208 Pb+ ⁵⁰ Ti 194.55 2.22 7.83 2.791 0.797 0.675 FF [48]	132 Sn+64 Ni	151.00	5.83	8.22	0.700 N	0.132	0 / 19	EvR	[261]
Silt13/103.0811.975.8650.0900.198EVR+FF[262] 1^{34} Te+ 40 Ca116.792.288.7900.5310.426EvR[263] 1^{34} Te+ 64 Ni164.212.679.221.8160.3170.455EvR[264] 2^{208} Pb+ 50 Ti194.552.227.832.7910.7970.675FF[48]	132 cm + 64 Ni	151.05	2.02	0.20	2005	0.221	0.410	EVIN	[201]
10 Te+**Ca116./92.288./900.5310.426EvR[263] 134 Te+ 64 Ni164.212.679.221.8160.3170.455EvR[264] 208 Pb+ 50 Ti194.552.227.832.7910.7970.675FF[48]	311T INI 134T 40 C	10/.01	5.08	11.97	5.00.0	0.090	0.198	EVK+FF	[202]
1°47 Te+°4 Ni 164.21 2.67 9.22 1.816 0.317 0.455 EvR [264] 208 Pb+ ⁵⁰ Ti 194.55 2.22 7.83 2.791 0.797 0.675 FF [48]	124 E4	116.79	2.28	8.79	U	0.531	0.426	EVR	[263]
^{2us} Pb+ ^{3u} Ti 194.55 2.22 7.83 2.791 0.797 0.675 FF [48]	¹³⁴ Te+ ⁰⁴ Ni	164.21	2.67	9.22	1.816	0.317	0.455	EvR	[264]
	²⁰⁸ Pb+ ⁵⁰ Ti	194.55	2.22	7.83	2.791	0.797	0.675	FF	[48]

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ning Wang reports financial support was provided by National Natural Science Foundation of China. Min Liu reports financial support was provided by National Natural Science Foundation of China. Ning Wang reports financial support was provided by Natural Science Foundation of Guangxi. Junlong Tian reports financial support was provided by Natural Science Foundation of Guangxi.

Data availability

Data available at http://www.imgmd.com/fusion/MSW_barrie r.txt.

Acknowledgments

This work was supported by the National Natural Science Foundation of China[http://dx.doi.org/10.13039/501100001809] (Grant No. 12265006, U1867212), the Guangxi Natural Science Foundation (Grant NO. 2023GXNSFDA026005, 2017GXNSFGA198001) and the Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi (CN) (Grant No. 2019KY0061). The authors would like to thank Huiming Jia and Li Ou for helpful discussions.

Appendix

See Table A.

References

- [1] S. Hofmann, G. Münzenberg, Rev. Modern Phys. 72 (2000) 733.
- [2] Y.T. Oganessian, F.S. Abdullin, P.D. Bailey, et al., Phys. Rev. Lett. 104 (2010) 142502.
- [3] V. Zagrebaev, W. Greiner, Phys. Rev. C 78 (2008) 034610.
- [4] G. Adamian, N. Antonenko, A. Diaz-Torres, et al., Nuclear Phys. A 671 (2000) 233.
- [5] N. Wang, J. Tian, W. Scheid, Phys. Rev. C 84 (2011) 061601.
- [6] V.V. Sargsyan, G.G. Adamian, N.V. Antonenko, et al., Phys. Rev. C 84 (2011) 064614.
- W.D. Myers, W.J. Świaątecki, Phys. Rev. C 62 (2000) 044610. [7]
- [8] M. Dasgupta, D. Hinde, N. Rowley, et al., Annu. Rev. Nucl. Part. S 48 (1998) 401.
- [9] T. Ichikawa, Phys. Rev. C 92 (2015) 064604.
- [10] P.W. Wen, C.J. Lin, R.G. Nazmitdinov, et al., Phys. Rev. C 103 (2021) 054601.
- [11] G. Gamow, Z. Phys. 51 (1928) 204.
- [12] C.Y. Wong, Phys. Rev. Lett. 31 (1973) 766.
- [13] V. Yu Denisov, I. Yu Sedykh, Eur. Phys. J. A 55 (2019) 153.
- [14] P. Stelson, Phys. Lett. B 205 (1988) 190.
- [15] P.H. Stelson, H.J. Kim, M. Beckerman, et al., Phys. Rev. C 41 (1990) 1584.
- [16] K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C 69 (2004) 024611.
- [17] C.L. Jiang, K.E. Rehm, B.B. Back, et al., Eur. Phys. J. A 54 (2018) 218.
- [18] P.W. Wen, C.J. Lin, H.M. Jia, et al., Phys. Rev. C 105 (2022) 034606.
- [19] M. Liu, N. Wang, Z. Li, et al., Nuclear Phys. A 768 (2006) 80.
- [20] N. Wang, M. Liu, Y. Yang, Sci. China Ser. G-Phys. Mech. Astron. 52 (2009) 1554
- [21] V.I. Zagrebaev, Y. Aritomo, M.G. Itkis, et al., Phys. Rev. C 65 (2001) 014607.
- [22] B. Wang, K. Wen, W.-J. Zhao, et al., At. Data Nucl. Data Tables 114 (2017) 281
- [23] N. Wang, Z. Li, W. Scheid, J. Phys. G: Nucl. Part. Phys. 34 (2007) 1935.
- [24] C.L. Jiang, B.P. Kay, Phys. Rev. C 105 (2022) 064601.
- [25] N. Rowley, G. Satchler, P. Stelson, Phys. Lett. B 254 (1991) 25.
- [26] H. Timmers, D. Ackermann, S. Beghini, et al., Nuclear Phys. A 633 (1998) 421.
- [27] J.R. Birkelund, J.R. Huizenga, Phys. Rev. C 17 (1978) 126.
- [28] K. Washiyama, D. Lacroix, Phys. Rev. C 78 (2008) 024610.
- [29] H.B. Zhou, Z.Y. Li, Z.G. Gan, et al., Phys. Rev. C 105 (2022) 024328.
- [30] Y. Jiang, N. Wang, Z. Li, et al., Phys. Rev. C 81 (2010) 044602.
- [31] N. Wang, L. Ou, Y. Zhang, et al., Phys. Rev. C 89 (2014) 064601.
- [32] A.S. Umar, V.E. Oberacker, Phys. Rev. C 74 (2006) 021601.

- [33] C.R. Morton, A.C. Berriman, M. Dasgupta, et al., Phys. Rev. C 60 (1999) 044608
- [34] C.R. Morton, A.C. Berriman, R.D. Butt, et al., Phys. Rev. C 62 (2000) 024607.
- [35] A.S. Umar, V.E. Oberacker, J.A. Maruhn, et al., Phys. Rev. C 80 (2009) 041601
- [36] N. Rowley, K. Hagino, Phys. Rev. C 91 (2015) 044617.
- [37] H.Q. Zhang, C.J. Lin, F. Yang, et al., Phys. Rev. C 82 (2010) 054609.
- [38] A.M. Stefanini, D. Ackermann, L. Corradi, et al., Phys. Rev. C 52 (1995) R1727
- [39] F. James, M. Roos, Comput. Phys. Comm. 10 (1975) 343.
- [40] A.M. Stefanini, G. Montagnoli, L. Corradi, et al., Phys. Rev. C 82 (2010) 014614
- [41] A.M. Stefanini, D. Ackermann, L. Corradi, et al., Phys. Rev. Lett. 74 (1995) 864.
- [42] http://nrv.jinr.ru/nrv/.
- W. Swiatecki, Nuclear Phys. A 376 (1982) 275. [43]
- N. Wang, T. Li, Phys. Rev. C 88 (2013) 011301. [44]
- [45] I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99 (2013) 69.
- T. Li, Y. Luo, N. Wang, At. Data Nucl. Data Tables 140 (2021) 101440. [46]
- [47] W.J. Świątecki, K. Siwek-Wilczyńska, J. Wilczyński, Phys. Rev. C 71 (2005) 014602
- [48] R. Bock, Y. Chu, M. Dakowski, et al., Nuclear Phys. A 388 (1982) 334.
- [49] C.S. Palshetkar, S. Santra, A. Chatterjee, et al., Phys. Rev. C 82 (2010) 044608
- [50] S. Gil, R. Vandenbosch, A.J. Lazzarini, et al., Phys. Rev. C 31 (1985) 1752.
- [51] H. Freiesleben, J. Huizenga, Nuclear Phys. A 224 (1974) 503.
- [52] R. Gunnink, J.W. Cobble, Phys. Rev. 115 (1959) 1247.
- P. Limkilde, G. Sletten, Nuclear Phys. A 199 (1973) 504 [53]
- [54] L.J. Colby, M.L. Shoaf, J.W. Cobble, Phys. Rev. 121 (1961) 1415.
- A. Fleury, F.H. Ruddy, M.N. Namboodiri, et al., Phys. Rev. C 7 (1973) 1231.
- M. Fisichella, V. Scuderi, A. Di Pietro, et al., J. Phys. Conf. Ser. 282 (2011) [56] 012014.
- [57] J.J. Kolata, V. Guimarães, D. Peterson, et al., Phys. Rev. Lett. 81 (1998) 4580
- [58] A. Lemasson, A. Shrivastava, A. Navin, et al., Phys. Rev. Lett. 103 (2009) 232701.
- M.M. Shaikh, S. Roy, S. Rajbanshi, et al., Phys. Rev. C 91 (2015) 034615. [59]
- [60] A. Di Pietro, P. Figuera, E. Strano, et al., Phys. Rev. C 87 (2013) 064614.
- [61] H. Kumawat, V. Jha, V.V. Parkar, et al., Phys. Rev. C 86 (2012) 024607.
- P.K. Rath, S. Santra, N.L. Singh, et al., Phys. Rev. C 79 (2009) 051601. [62]
- [63] P. Rath, S. Santra, N. Singh, et al., Nuclear Phys. A 874 (2012) 14.
- M.K. Pradhan, A. Mukherjee, P. Basu, et al., Phys. Rev. C 83 (2011) 064606. [64]
- [65] A. Shrivastava, A. Navin, A. Lemasson, et al., Phys. Rev. Lett. 103 (2009) 232702
- [66] C.S. Palshetkar, S. Thakur, V. Nanal, et al., Phys. Rev. C 89 (2014) 024607.
- [67] M. Dasgupta, D.J. Hinde, K. Hagino, et al., Phys. Rev. C 66 (2002) 041602.
- [68] H. Freiesleben, G.T. Rizzo, J.R. Huizenga, Phys. Rev. C 12 (1975) 42.
- [69] C. Scholz, L. Ricken, E. Kuhlmann, Z. Phys. A 325 (1986) 203.
- [70] A. Pakou, K. Rusek, N. Alamanos, et al., Eur. Phys. J. A 39 (2009) 187.
- 711 C. Beck, F.A. Souza, N. Rowley, et al., Phys. Rev. C 67 (2003) 054602.
- [72] P.K. Rath, S. Santra, N.L. Singh, et al., Phys. Rev. C 88 (2013) 044617.
- [73] R. Broda, M. Ishihara, B. Herskind, et al., Nuclear Phys. A 248 (1975) 356.
- A. Shrivastava, A. Navin, A. Diaz-Torres, et al., Phys. Lett. B 718 (2013) [74] 931
- [75] H. Freiesleben, H.C. Britt, J. Birkelund, et al., Phys. Rev. C 10 (1974) 245.
- [76] A. Parihari, S. Santra, A. Pal, et al., Phys. Rev. C 90 (2014) 014603.
- [77] E. Martinez-Quiroz, E.F. Aguilera, D. Lizcano, et al., Phys. Rev. C 90 (2014) 014616
- [78] R. Raabe, C. Angulo, J.L. Charvet, et al., Phys. Rev. C 74 (2006) 044606.
- [79] V.V. Parkar, R. Palit, S.K. Sharma, et al., Phys. Rev. C 82 (2010) 054601.
- [80] P.R.S. Gomes, I. Padron, E. Crema, et al., Phys. Rev. C 73 (2006) 064606.
- Y.D. Fang, P.R.S. Gomes, J. Lubian, et al., Phys. Rev. C 91 (2015) 014608. [81]
- [82] N.T. Zhang, Y.D. Fang, P.R.S. Gomes, et al., Phys. Rev. C 90 (2014) 024621.
- [83] M. Dasgupta, P.R.S. Gomes, D.J. Hinde, et al., Phys. Rev. C 70 (2004) 024606.
- [84] Z. Liu, C. Signorini, M. Mazzocco, et al., Eur. Phys. J. A 26 (2005) 73.
- [85] C. Signorini, Z. Liu, Z. Li, et al., Eur. Phys. J. A 5 (1999) 7.
- [86] C. Signorini, Z. Liu, A. Yoshida, et al., Eur. Phys. J. A 2 (1998) 227.
- [87] A. Mukherjee, Subinit Roy, M. Pradhan, et al., Phys. Lett. B 636 (2006) 91.
- B. Dasmahapatra, B. Čujec, F. Lahlou, Nuclear Phys. A 408 (1983) 192. [88]

R.G. Stokstad, Z.E. Switkowski, R.A. Dayras, et al., Phys. Rev. Lett. 37 (1976)

E. Bozek, D. De Castro-Rizzo, S. Cavallaro, et al., Nuclear Phys. A 451

J.O. Newton, C.R. Morton, M. Dasgupta, et al., Phys. Rev. C 64 (2001)

[89] Z. Liu, H. Zhang, J. Xu, et al., Phys. Rev. C 54 (1996) 761. H. Cheung, M. High, B. Čujec, Nuclear Phys. A 296 (1978) 333.

B. Dasmahapatra, B. Čujec, Nuclear Phys. A 565 (1993) 657.

G. Hulke, C. Rolfs, H. Trautvetter, Z. Phys. A 297 (1980) 161.

M. High, B. Čujec, Nuclear Phys. A 278 (1977) 149.

[90]

[91]

[92]

[93]

[94]

[95]

[96]

15

888.

1986) 171.

064608

- [97] D. Abriola, A.A. Sonzogni, M. di Tada, et al., Phys. Rev. C 46 (1992) 244.
- [98] M. Crippa, E. Gadioli, P. Vergani, et al., Z. Phys. A 350 (1994) 121.
- [99] A. Shrivastava, S. Kailas, A. Chatterjee, et al., Phys. Rev. C 63 (2001)
- 054602 [100] R.N. Sagaidak, G.N. Kniajeva, I.M. Itkis, et al., Phys. Rev. C 68 (2003) 014603
- [101] A. Mukherjee, D.J. Hinde, M. Dasgupta, et al., Phys. Rev. C 75 (2007) 044608
- [102] M.L. Chatterjee, L. Potvin, B. Čujec, Nuclear Phys. A 333 (1980) 273.
- [103] H. Dumont, B. Delaunay, J. Delaunay, et al., Nuclear Phys. A 435 (1985) 301.
- [104] B.P. Ajith Kumar, K.M. Varier, R.G. Thomas, et al., Phys. Rev. C 72 (2005) 067601
- [105] Shiu-Chin Wu, J. Overley, C. Barnes, et al., Nuclear Phys. A 312 (1978) 177.
- [106] Z. Switkowski, R. Stokstad, R. Wieland, Nuclear Phys. A 279 (1977) 502.
- [107] P.A. DeYoung, J.J. Kolata, L.J. Satkowiak, et al., Phys. Rev. C 26 (1982) 1482
- [108] Z. Switkowski, R. Stokstad, R. Wieland, Nuclear Phys. A 274 (1976) 202.
- [109] P. Gomes, T. Penna, R. Liguori Neto, et al., Nucl. Instrum. Methods A 280 (1989) 395.
- [110] B.R. Behera, M. Satpathy, S. Jena, et al., Phys. Rev. C 69 (2004) 064603.
- [111] H. Funaki, E. Arai, Nuclear Phys. A 556 (1993) 307.
- [112] E. Vulgaris, L. Grodzins, S.G. Steadman, et al., Phys. Rev. C 33 (1986) 2017.
- [113] P. Christensen, Z. Switkowskiw, R. Dayras, Nuclear Phys. A 280 (1977) 189
- [114] B. Dasmahapatra, B. Čujec, I. Szöghy, et al., Nuclear Phys. A 526 (1991) 395
- [115] A. Kuronen, J. Keinonen, P. Tikkanen, Phys. Rev. C 35 (1987) 591.
- [116] J. Thomas, Y.T. Chen, S. Hinds, et al., Phys. Rev. C 33 (1986) 1679.
- [117] J. Dauk, K. Lieb, A. Kleinfeld, Nuclear Phys. A 241 (1975) 170.
- [118] R.L. Neto, J. Acquadro, P. Gomes, et al., Nuclear Phys. A 512 (1990) 333.
- [119] N. Keeley, J. Lilley, J. Wei, et al., Nuclear Phys. A 628 (1998) 1.
- [120] L. Chamon, D. Pereira, E. Rossi, et al., Phys. Lett. B 275 (1992) 29.
- [121] D. Pereira, G. Ramirez, O. Sala, et al., Phys. Lett. B 220 (1989) 347.
- [122] M. Langevin, J. Barreto, C. Détraz, Phys. Rev. C 14 (1976) 152.
- [123] P.R.S. Gomes, M.D. Rodríguez, G.V. Martí, et al., Phys. Rev. C 71 (2005) 034608
- [124] E.F. Aguilera, J.J. Kolata, R.J. Tighe, Phys. Rev. C 52 (1995) 3103.
- [125] H.M. Jia, C.J. Lin, F. Yang, et al., Phys. Rev. C 86 (2012) 044621.
- [126] D. Ackermann, L. Corradi, D. Napoli, et al., Nuclear Phys. A 575 (1994) 374.
- [127] V. Tripathi, L.T. Baby, J.J. Das, et al., Phys. Rev. C 65 (2001) 014614.
- [128] M. di Tada, D.E. DiGregorio, D. Abriola, et al., Phys. Rev. C 47 (1993) 2970.
- [129] J.R. Leigh, M. Dasgupta, D.J. Hinde, et al., Phys. Rev. C 52 (1995) 3151.
- [130] D.E. DiGregorio, M. diTada, D. Abriola, et al., Phys. Rev. C 39 (1989) 516.
- [131] R.G. Stokstad, Y. Eisen, S. Kaplanis, et al., Phys. Rev. C 21 (1980) 2427.
- [132] U. Jahnke, H. Rossner, D. Hilscher, et al., Phys. Rev. Lett. 48 (1982) 17.
- [133] J.X. Wei, J.R. Leigh, D.J. Hinde, et al., Phys. Rev. Lett. 67 (1991) 3368.
- [134] J.O. Fernández Niello, M. di Tada, A.O. Macchiavelli, et al., Phys. Rev. C 43 (1991) 2303.
- [135] T. Rajbongshi, K. Kalita, S. Nath, et al., Phys. Rev. C 93 (2016) 054622.
- [136] R. Lemmon, J. Leigh, J. Wei, et al., Phys. Lett. B 316 (1993) 32.
- [137] M. Trotta, A. Stefanini, S. Beghini, et al., Eur. Phys. J. A 25 (2005) 615.
- [138] E. Prasad, K. Varier, R. Thomas, et al., Nuclear Phys. A 882 (2012) 62.
- [139] E. Prasad, K.M. Varier, N. Madhavan, et al., Phys. Rev. C 84 (2011) 064606.
- [140] T. Sikkeland, Phys. Rev. 135 (1964) B669.
- [141] Y. Eyal, M. Beckerman, R. Chechik, et al., Phys. Rev. C 13 (1976) 1527.
- [142] R.J. Tighe, J.J. Kolata, M. Belbot, et al., Phys. Rev. C 47 (1993) 2699.
- [143] H. Roth, J. Christiansson, J. Dubois, Nuclear Phys. A 343 (1980) 148.
- [144] T.K. Steinbach, J. Vadas, J. Schmidt, et al., Phys. Rev. C 90 (2014) 041603.
- [145] A.M. Borges, C.P. da Silva, D. Pereira, et al., Phys. Rev. C 46 (1992) 2360.
- [146] C.P. Silva, D. Pereira, L.C. Chamon, et al., Phys. Rev. C 55 (1997) 3155.
- [147] N.V. Prasad, A. Vinodkumar, A. Sinha, et al., Nuclear Phys. A 603 (1996).
- [148] D. Hinde, J. Leigh, J. Newton, et al., Nuclear Phys. A 385 (1982) 109.
- [149] K. Mahata, S. Kailas, A. Shrivastava, et al., Nuclear Phys. A 720 (2003) 209.
- [150] D.J. Hinde, A.C. Berriman, M. Dasgupta, et al., Phys. Rev. C 60 (1999) 054602.
- [151] Z. Huanqiao, L. Zuhua, X. Jincheng, et al., Nuclear Phys. A 512 (1990) 531.
- [152] K.E. Rehm, H. Esbensen, C.L. Jiang, et al., Phys. Rev. Lett. 81 (1998) 3341.
- [153] A. Samant, S. Kailas, A. Chatterjee, et al., Eur. Phys. J. A 7 (2000) 59.
- [154] N. Majumdar, P. Bhattacharya, D.C. Biswas, et al., Phys. Rev. C 51 (1995) 3109.
- [155] S. Kailas, A. Navin, A. Chatterjee, et al., Phys. Rev. C 43 (1991) 1466.
- [156] H. Zhang, J. Xu, Z. Liu, et al., Phys. Lett. B 218 (1989) 133.
- [157] E. Piasecki, L. Świderski, N. Keeley, et al., Phys. Rev. C 85 (2012) 054608.
- [158] V.E. Viola, T. Sikkeland, Phys. Rev. 128 (1962) 767.
- [159] R. Butsch, H. Jänsch, D. Krämer, et al., Phys. Rev. Lett. 57 (1986) 2002.
- [160] S. Gary, C. Volant, Phys. Rev. C 25 (1982) 1877.

- [161] C.L. Jiang, A.M. Stefanini, H. Esbensen, et al., Phys. Rev. Lett. 113 (2014) 022701
- [162] M. Itkis, I. Itkis, G. Knyazheva, et al., Nuclear Phys. A 834 (2010) 374c.
- [163] C.L. Jiang, K.E. Rehm, H. Esbensen, et al., Phys. Rev. C 81 (2010) 024611.
- [164] E.F. Aguilera, J.J. Vega, J.J. Kolata, et al., Phys. Rev. C 41 (1990) 910.
- [165] Y. Watanabe, A. Yoshida, T. Fukuda, et al., Eur. Phys. J. A 10 (2001) 373.
- [166] A. Morsad, J.J. Kolata, R.J. Tighe, et al., Phys. Rev. C 41 (1990) 988.
- [167] G. Montagnoli, A.M. Stefanini, H. Esbensen, et al., Phys. Rev. C 90 (2014) 044608
- [168] C.L. Jiang, B.B. Back, H. Esbensen, et al., Phys. Rev. C 78 (2008) 017601.
- [169] A.M. Stefanini, G. Fortuna, A. Tivelli, et al., Phys. Rev. C 30 (1984) 2088.
- [170] A. Stefanini, G. Fortuna, R. Pengo, et al., Nuclear Phys. A 456 (1986) 509.
- [171] C. Jiang, B. Back, H. Esbensen, et al., Phys. Lett. B 640 (2006) 18.
- [172] A.K. Sinha, L.T. Baby, N. Badiger, et al., J. Phys. G: Nucl. Part. Phys. 23 (1997) 1331.
- [173] M. Dasgupta, A. Navin, Y.K. Agarwal, et al., Nuclear Phys. A 539 (1992) 351
- [174] M. Dasgupta, A. Navin, Y.K. Agarwal, et al., Phys. Rev. Lett. 66 (1991) 1414.
- [175] S. Kalkal, S. Mandal, N. Madhavan, et al., Phys. Rev. C 81 (2010) 044610.
- [176] Khushboo S. Mandal, S. Nath, et al., Phys. Rev. C 96 (2017) 014614.
- [177] L.T. Baby, V. Tripathi, D.O. Kataria, et al., Phys. Rev. C 56 (1997) 1936.
- [178] D. Ackermann, P. Bednarczyk, L. Corradi, et al., Nuclear Phys. A 609 (1996) 91.
- [179] D. Ackermann, F. Scarlassara, P. Bednarczyk, et al., Nuclear Phys. A 583 (1995) 129.
- [180] S. Gil, D. Abriola, D.E. DiGregorio, et al., Phys. Rev. Lett. 65 (1990) 3100.
- [181] D. Hinde, R. Charity, G. Foote, et al., Nuclear Phys. A 452 (1986) 550.
- [182] R.D. Butt, D.J. Hinde, M. Dasgupta, et al., Phys. Rev. C 66 (2002) 044601.
- [183] K. Nishio, H. Ikezoe, S. Mitsuoka, et al., Phys. Rev. C 62 (2000) 014602.
- [184] D. Hinde, C. Morton, M. Dasgupta, et al., Nuclear Phys. A 592 (1995) 271.
- [185] K. Nishio, S. Hofmann, F. Heßberger, et al., Eur. Phys. J. A 29 (2006) 281.
- [186] K. Nishio, H. Ikezoe, I. Nishinaka, et al., Phys. Rev. C 82 (2010) 044604.
- [187] A. Menchaca-Rocha, E. Belmont-Moreno, M.E. Brandan, et al., Phys. Rev.
- C 41 (1990) 2654. [188] G.M. Berkowitz, P. Braun-Munzinger, J.S. Karp, et al., Phys. Rev. C 28 (1983) 667.
- [189] G. Montagnoli, A.M. Stefanini, H. Esbensen, et al., Phys. Rev. C 87 (2013) 014611.
- [190] R.J. Tighe, J.J. Vega, E. Aguilera, et al., Phys. Rev. C 42 (1990) 1530.
- [191] A. Stefanini, G. Fortuna, R. Pengo, et al., Phys. Lett. B 162 (1985) 66.
- [192] A. Mukherjee, M. Dasgupta, D.J. Hinde, et al., Phys. Rev. C 66 (2002) 034607.
- [193] H.M. Jia, C.J. Lin, F. Yang, et al., Phys. Rev. C 89 (2014) 064605.

[200] L. Corradi, S. Skorka, U. Lenz, et al., Z. Phys. A 335 (1990) 55.

044602.

064602

024611.

044607.

064609

014601.

054611.

1215.

1223.

(1985) 212.

174.

[204]

[205]

[206]

[207]

[211]

16

[194] R. Pengo, D. Evers, K. Löbner, et al., Nuclear Phys. A 411 (1983) 255. [195] S. Gil, F. Hasenbalg, J.E. Testoni, et al., Phys. Rev. C 51 (1995) 1336.

[196] P.R.S. Gomes, I.C. Charret, R. Wanis, et al., Phys. Rev. C 49 (1994) 245.

[197] S. Mitsuoka, H. Ikezoe, K. Nishio, et al., Phys. Rev. C 62 (2000) 054603.

[198] H. Zhang, C. Zhang, C. Lin, et al., J. Phys. Conf. Ser. 282 (2011) 012013.

[201] C. Morton, D. Hinde, A. Berriman, et al., Phys. Lett. B 481 (2000) 160.

[202] J. Khuyagbaatar, K. Nishio, S. Hofmann, et al., Phys. Rev. C 86 (2012)

[203] K. Nishio, S. Hofmann, F.P. Heßberger, et al., Phys. Rev. C 82 (2010)

A.M. Stefanini, G. Montagnoli, R. Silvestri, et al., Phys. Rev. C 78 (2008)

G. Montagnoli, S. Beghini, B. Guiot, et al., AIP Conf. Proc. 1098 (2009) 38.

G. Montagnoli, A.M. Stefanini, L. Corradi, et al., Phys. Rev. C 82 (2010)

A.M. Stefanini, L. Corradi, A.M. Vinodkumar, et al., Phys. Rev. C 62 (2000)

[208] S. Cavallaro, M. Sperduto, B. Delaunay, et al., Nuclear Phys. A 513 (1990)

[209] W. Scobel, H.H. Gutbrod, M. Blann, et al., Phys. Rev. C 14 (1976) 1808. [210] E.M. Szanto, R.L. Neto, M.C.S. Figueira, et al., Phys. Rev. C 41 (1990) 2164.

[213] E. Martínez-Quiroz, E.F. Aguilera, J.J. Kolata, et al., Phys. Rev. C 63 (2001)

[214] J. Mahon, L. Lee Jr., J. Liang, et al., J. Phys. G: Nucl. Part. Phys. 23 (1997)

[215] W. Reisdorf, F. Hessberger, K. Hildenbrand, et al., Nuclear Phys. A 438

[216] R. Stokstad, W. Reisdorf, K. Hildenbrand, et al., Z. Phys. A 295 (1980) 269.

[217] H.-G. Clerc, J. Keller, C.-C. Sahm, et al., Nuclear Phys. A 419 (1984) 571.

[218] H.A. Aljuwair, R.J. Ledoux, M. Beckerman, et al., Phys. Rev. C 30 (1984)

W. Scobel, A. Mignerey, M. Blann, et al., Phys. Rev. C 11 (1975) 1701. [212] R.N. Sahoo, M. Kaushik, A. Sood, et al., Phys. Rev. C 102 (2020) 024615.

[199] B.B. Back, D.J. Blumenthal, C.N. Davids, et al., Phys. Rev. C 60 (1999)

- [219] G. Montagnoli, A.M. Stefanini, C.L. Jiang, et al., Phys. Rev. C 85 (2012) 024607.
- [220] C.L. Jiang, A.M. Stefanini, H. Esbensen, et al., Phys. Rev. C 82 (2010) 041601.
- [221] M. Trotta, A.M. Stefanini, L. Corradi, et al., Phys. Rev. C 65 (2001) 011601.
- [222] R. Vandenbosch, A.A. Sonzogni, J.D. Bierman, J. Phys. G: Nucl. Part. Phys. 23 (1997) 1303.
- [223] B. Sikora, J. Bisplinghoff, W. Scobel, et al., Phys. Rev. C 20 (1979) 2219.
- [224] D. Bourgin, S. Courtin, F. Haas, et al., Phys. Rev. C 90 (2014) 044610.
- [225] H. Timmers, L. Corradi, A. Stefanini, et al., Phys. Lett. B 399 (1997) 35.
 [226] A.M. Stefanini, B.R. Behera, S. Beghini, et al., Phys. Rev. C 76 (2007)
- 014610.
- [227] A. Stefanini, G. Montagnoli, H. Esbensen, et al., Phys. Lett. B 728 (2014) 639.
- [228] A.M. Stefanini, J. Phys. G: Nucl. Part. Phys. 23 (1997) 1401.
- [229] F. Scarlassara, S. Beghini, G. Montagnoli, et al., Nuclear Phys. A 672 (2000) 99.
- [230] J.D. Bierman, P. Chan, J.F. Liang, et al., Phys. Rev. C 54 (1996) 3068.
- [231] A.J. Pacheco, J.O. Fernández Niello, D.E. DiGregorio, et al., Phys. Rev. C 45 (1992) 2861.
- [232] K. Nishio, S. Mitsuoka, I. Nishinaka, et al., Phys. Rev. C 86 (2012) 034608.
- [233] A. Stefanini, G. Montagnoli, R. Silvestri, et al., Phys. Lett. B 679 (2009) 95.
 [234] A.M. Stefanini, F. Scarlassara, S. Beghini, et al., Phys. Rev. C 73 (2006)
- 034606. [235] M. Trotta, A. Stefanini, L. Corradi, et al., Nuclear Phys. A 734 (2004) 245.
- [235] M. Hotta, A. Stefanini, E. Colladi, et al., Nuclear Phys. R 734 (2004) 245
 [236] A. Stefanini, M. Trotta, B. Behera, et al., Eur. Phys. J. A 23 (2005) 473.
- [230] A. Stelahini, M. Hotta, B. Benera, et al., Eur. Phys. J. A 23 (2005) 473.[237] E. Prokhorova, A. Bogachev, M. Itkis, et al., Nuclear Phys. A 802 (2008)
- 45.
- [238] A.M. Stefanini, M. Trotta, L. Corradi, et al., Phys. Rev. C 65 (2002) 034609.
 [239] A.M. Stefanini, G. Montagnoli, L. Corradi, et al., Phys. Rev. C 92 (2015)
- 064607.
- [240] A.M. Vinodkumar, K.M. Varier, N.V.S.V. Prasad, et al., Phys. Rev. C 53 (1996) 803.
- [241] A.M. Stefanini, G. Montagnoli, L. Corradi, et al., Phys. Rev. C 81 (2010) 037601.

- [242] M. Beckerman, J. Ball, H. Enge, et al., Phys. Rev. C 23 (1981) 1581.
- [243] M. Beckerman, M. Salomaa, A. Sperduto, et al., Phys. Rev. Lett. 45 (1980) 1472.
- [244] M. Beckerman, M. Salomaa, A. Sperduto, et al., Phys. Rev. C 25 (1982) 837.
- [245] F. Scarlassara, S. Beghini, F. Soramel, et al., Z. Phys. A 338 (1991) 171.
- [246] K. Rehm, H. Esbensen, J. Gehring, et al., Phys. Lett. B 317 (1993) 31.
- [247] F.L.H. Wolfs, Phys. Rev. C 36 (1987) 1379.
- [248] K.T. Lesko, W. Henning, K.E. Rehm, et al., Phys. Rev. C 34 (1986) 2155.
- [249] C.L. Jiang, A.M. Stefanini, H. Esbensen, et al., Phys. Rev. C 91 (2015) 044602.
- [250] C.L. Jiang, H. Esbensen, K.E. Rehm, et al., Phys. Rev. Lett. 89 (2002) 052701.
 [251] A. Stefanini, G. Montagnoli, F. Scarlassara, et al., Eur. Phys. J. A 49 (2013)
- [252] C.L. Jiang, K.E. Rehm, R.V.F. Janssens, et al., Phys. Rev. Lett. 93 (2004)
- 012701. [253] A. Stefanini, L. Corradi, D. Ackermann, et al., Nuclear Phys. A 548 (1992)
- [255] A. Stelanni, L. Corradi, D. Ackernianii, et al., Nuclear Phys. A 548 (1992) 453.
- [254] W.S. Freeman, H. Ernst, D.F. Geesaman, et al., Phys. Rev. Lett. 50 (1983) 1563.
- [255] K.T. Lesko, W. Henning, K.E. Rehm, et al., Phys. Rev. Lett. 55 (1985) 803.
- [256] M. Beckerman, M.K. Salomaa, J. Wiggins, et al., Phys. Rev. C 28 (1983) 1963
- [257] M. Beckerman, J. Wiggins, H. Aljuwair, et al., Phys. Rev. C 29 (1984) 1938.
- [258] W. Reisdorf, F. Hessberger, K. Hildenbrand, et al., Nuclear Phys. A 444 (1985) 154.
- [259] J.J. Kolata, A. Roberts, A.M. Howard, et al., Phys. Rev. C 85 (2012) 054603.
- [260] Z. Kohley, J.F. Liang, D. Shapira, et al., Phys. Rev. Lett. 107 (2011) 202701.
- [261] J. Liang, D. Shapira, C. Gross, et al., Nuclear Phys. A (2004) 103.
- [262] J.F. Liang, D. Shapira, J.R. Beene, et al., Phys. Rev. C 75 (2007) 054607.
- [263] Z. Kohley, J.F. Liang, D. Shapira, et al., Phys. Rev. C 87 (2013) 064612.
- [264] D. Shapira, J. Liang, C. Gross, et al., Eur. Phys. J. A 25 (2005) 241.