Do chiral bands really exist in 105,106,107Ag?
— The risk of misinterpretation

Hai-Liang Ma (马海亮)

China Institute of Atomic Energy (中国原子能科学研究院)

全国核反应大会 2013年5月12日 深圳
合作者：姚顺和，吴晓光
Do chiral bands really exist in 105,106,107Ag?
Building chiral bands:

- triaxial
- a few high-\(j \) valence particles
- a few high-\(j \) valence holes

Experimental criteria:

- nearly degenerate \(\Delta I = 1 \) bands
- constancy of \(S(I) = \frac{[E(I) - E(I - 1)]}{2I} \)
- identical spin alignment, MOI, electromagnetic properties
- odd-even staggering of intraband \(B(M1)/B(E2) \) and interband \(B(M1) \) values
- vanishing of the interband \(B(E2) \) transitions at high spin

Candidate chiral doublet bands:

- \(A \sim 80 \pi g_{9/2} \otimes \nu g_{9/2}^{-1} \)
- \(A \sim 100 \pi g_{9/2}^{-1} \otimes \nu h_{11/2} \)
 \(\pi g_{9/2} \otimes \nu h_{11/2}^2 \)
- \(A \sim 130^* \)
 \(\pi h_{11/2} \otimes \nu h_{11/2}^{-1} \)
- \(A \sim 190 \pi g_{9/2}^{-1} \otimes \nu i_{13/2} \)
Chiral symmetry in nuclei

Building chiral bands:
✓ triaxial
✓ a few high-j valence particles
✓ a few high-j valence holes

Experimental criteria:
✓ nearly degenerate $\Delta I = 1$ bands
✓ constancy of $S(I) = [E(I) - E(I - 1)]/2I$
✓ identical spin alignment, MOI, electromagnetic properties
✓ odd-even staggering of intraband $B(M1)/B(E2)$ and interband $B(M1)$ values
✓ vanishing of the interband $B(E2)$ transitions at high spin

Candidate chiral doublet bands:
- $A \sim 80 \pi g_{9/2} \otimes \nu g_{9/2}^{-1}$
- $A \sim 100 \pi g_{9/2}^{-1} \otimes \nu h_{11/2}$
- $\pi g_{9/2}^{-1} \otimes \nu h_{11/2}^{2}$
- $A \sim 130^*$
- $\pi h_{11/2} \otimes \nu h_{11/2}^{-1}$
- $A \sim 190 \pi g_{9/2}^{-1} \otimes \nu i_{13/2}$

Hai-Liang Ma (马海亮) Do chiral bands really exist in 105,106,107Ag?
Chiral bands in the silver isotopes

TABLE I. (Continued.)

<table>
<thead>
<tr>
<th>Eγ (keV)</th>
<th>Iγ (rel.)</th>
<th>RDCO</th>
<th>Multipolarity</th>
<th>Ei (keV)</th>
<th>Jπi</th>
<th>Bandi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1093.7</td>
<td>0.30</td>
<td>0.57(17)</td>
<td>D 2775 17/2+</td>
<td>1102.5</td>
<td>1.40</td>
<td>3125 21/2+</td>
</tr>
<tr>
<td>1105.2</td>
<td>1.99</td>
<td>0.99(12)</td>
<td>E 3092 21/2+</td>
<td>1114.3</td>
<td>0.66</td>
<td>7806 41/2+</td>
</tr>
<tr>
<td>1137.6</td>
<td>1.33</td>
<td>0.38(19)</td>
<td>A 3033 23/2+</td>
<td>1147.1</td>
<td>1.50</td>
<td>6609 35/2−</td>
</tr>
<tr>
<td>1158.3</td>
<td>3.50</td>
<td>0.52(14)</td>
<td>A 3092 19/2+</td>
<td>1163.5</td>
<td>0.99</td>
<td>6221 35/2−</td>
</tr>
<tr>
<td>1182.0</td>
<td>1.11</td>
<td>0.14(14)</td>
<td>C 3114 35/2−</td>
<td>1272.1</td>
<td>1.20</td>
<td>6717 37/2−</td>
</tr>
<tr>
<td>1288.8</td>
<td>1.20</td>
<td>0.20(15)</td>
<td>C 3125 37/2−</td>
<td>1373.5</td>
<td>2.66</td>
<td>3351 21/2+</td>
</tr>
<tr>
<td>1493.8</td>
<td>1.44</td>
<td>0.58(15)</td>
<td>F 2470 15/2−</td>
<td>1552.9</td>
<td>1.70</td>
<td>3424 17/2−</td>
</tr>
</tbody>
</table>

The energies are given in keV; the width of the transitions are proportional to their relative intensities.

Do chiral bands really exist in 105, 106, 107 Ag?
Chiral bands in the silver isotopes

\[^{106}\text{Ag} \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Plot of excitation energy, kinematic moments of inertia, quasiparticle alignments, and the S/I parameter as a function of spin for bands 1 and 2 in \(^{106}\text{Ag}\).}
\end{figure}

Hai-Liang Ma (马海亮) Do chiral bands really exist in \(^{105,106,107}\text{Ag}\)?
Chiral bands in the silver isotopes

FIG. 3. Plot of excitation energy, kinematic moments of inertia, quasiparticle alignments, and the $S(I)$ parameter as a function of spin for bands 1 and 2 in 106Ag.
Shun-He Yao, Hai-Liang Ma, Xiao-Guan Wu et al., to be published

Do chiral bands really exist in $^{105,106,107}\text{Ag}$?
Motivation

Interpretations excluding chiral picture:
- γ band;
- Shape coexistence;
- Many particle correlations (Chen Y.S. & Gao Z.C.);
- Pseudospin partner bands.

We need:
configuration dependent calculation in the full deformation mesh!!!
Mean field calculation - modified oscillator (Nilsson) potential, LSD liquid drop model, $E_{tot}(I) = E_{shell}(I) + E_{rld}(I)$

Construction of diabatic orbitals:
- possible to interpolate spins;
- accurate configuration tracing;
- distinguish between high-j shells and low-j orbitals.

Do chiral bands really exist in 105,106,107Ag?
Particle-number-projected CNSB (cranked-Nilsson-Strutinsky-Bogoliubov) model

\[H_{\text{CNSB}} = h_{\text{MO}}(\varepsilon_2, \gamma, \varepsilon_4) - \omega_x j_x - \Delta(P^\dagger + P) - \lambda \hat{N} \]

\[E_p(\omega, \Delta_p, \lambda_p, \varepsilon_2, \gamma, \varepsilon_4) = \frac{\langle \Psi | HPZ | \Psi \rangle}{\langle \Psi | PZ | \Psi \rangle}, \]

\[E_{\text{tot}}(I) = \min_{\varepsilon_i} [E_{\text{RLD}}(I, \varepsilon_i)] + E_{\text{shell}}(I, \varepsilon_i) + E_{\text{pair}}(I, \varepsilon_i) \]

\[G_p = [17.54 + 0.173 (N - Z)]/A, \]

\[G_n = [16.68 - 0.069 (N - Z)]/A. \]

- virtual crossing removed, possible to interpolate spins;
- particle number projection;
- varying pairing gaps and Fermi levels in the \((\Delta, \lambda)\) mesh to obtain the self-consistent \((\Delta, \lambda)\) and avoid fluctuations in the iteration methods;
- full \((\varepsilon_2, \gamma, \varepsilon_4)\) mesh calculation;
- direct comparison with unpaired calculations;
- difficult to fix configurations in a large mesh.

Typical potential energy surfaces on the \((\Delta, \lambda)\) plane.
Nilsson diagram

Configuration labeling

\[[p, n] \equiv \pi(1g_{9/2})^p \otimes \nu[(2d_{5/2}1g_{7/2})^{10-n}(1h_{11/2})^n]\]

The pairing correlation is dependent on:
- the level density around the Fermi level;
- the blocked orbitals;

Nilsson能级随着四极形变参数\(\varepsilon_2\)变化图。实线和虚线分别代表字称为正和负的轨道。
Routhian

\[\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \]

\[[p, n](\pi_p, \alpha_p)(\pi_n, \alpha_n) \]

\[^{105}\text{Ag} \text{ yrast band } [7,2](+, \pm 1/2)(+, 0) \]

转动摇Nilsson单粒子能级(routhian)图。实线、点线、折线和点折线分别代表 \((\pi, \alpha) = (+, 1/2), (+, -1/2), (-, 1/2)\) 和 \((-,-1/2)\) 轨道。
Routhian

\[\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \]

\[[p, n] (\pi_p, \alpha_p) (\pi_n, \alpha_n) \]

\[^{105}\text{Ag} (\pi = -) \]

\[[7,1] (+, \pm 1/2)(-, 1) \]

转不Nilsson单粒子能级(routhian)图。实线、点线、折线和点折线 分别代
表\((\pi, \alpha) = (+, 1/2), (+, -1/2), (-, 1/2)\)和\((-,-1/2)\)轨道。
转动Nilsson单粒子能级（routhian）图。实线、点线、折线和点折线分别代表\((\pi, \alpha) = (+, 1/2), (+, -1/2), (-, 1/2)\)和\((-,-1/2)\)轨道。

\[p, n] (\pi_p, \alpha_p) (\pi_n, \alpha_n) \]

\(^{105}\text{Ag} \ (\pi = -) \]
\[[7,1] (+, \pm 1/2)(-, 1) \]
\[[7,1] (+, \pm 1/2)(-, 0) \]

Do chiral bands really exist in \(^{105,106,107}\text{Ag} \)?
Do chiral bands really exist in 105,106,107Ag?

Hai-Liang Ma (马海亮)
Do chiral bands really exist in 105,106,107Ag?

Hai-Liang Ma (马海亮)
Routhian

\[\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \]

\(\hbar \omega \) [MeV]

Single-neutron energies \(\varepsilon_i \) [MeV]

\[\begin{align*}
\varepsilon_2 &= 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \\
[550] &\quad \text{1/2} \\
[411] &\quad \text{3/2} \\
[541] &\quad \text{3/2} \\
[413] &\quad \text{5/2} \\
[422] &\quad \text{7/2} \\
[431] &\quad \text{1/2} \\
[404] &\quad \text{9/2} \\
[420] &\quad \text{1/2} \\
[413] &\quad \text{7/2} \\
[431] &\quad \text{3/2} \\
\end{align*} \]

\(1h_{11/2} \)

\(2d_{5/2} 1g_{7/2} \)

\(1g_{9/2} \)

\(2d_{5/2} 1g_{7/2} \)

\(1g_{9/2} \)

\(2p_{1/2} 1f_{5/2} \)

\(56 \)

\(58 \)

\(48 \)

\(46 \)

转Routhian单粒子能级（routhian）图。实线、点线、折线和点折线分别代表
表(\(\pi, \alpha \) = (+, 1/2), (+, -1/2), (-, 1/2)和(-, -1/2)轨道。
转Nilsson单粒子能级（routhian）图。实线、点线、折线和点折线分别代表

\[p, n \,(\pi_p, \alpha_p)(\pi_n, \alpha_n) \]

\[^{106}\text{Ag} \]

\[[7,1](+, \pm 1/2)(+, -1/2) \]

\[[7,1'](+, \pm 1/2)(+, 1/2) \]

\[[7,3](+, \pm 1/2)(+, -1/2) \]
Routhian

\(\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \)

\[[p, n](\pi_p, \alpha_p)(\pi_n, \alpha_n) \]

\(^{107}\text{Ag}\) yrast band

\([7,2](+, \pm 1/2)(+, 0)\)

转动Nilsson单粒子能级（routhian）图。实线、点线、折线和点折线分别代表

\((\pi, \alpha) = (+, 1/2), (+, -1/2), (-, 1/2) \)和\((-, -1/2) \)轨道。
转Nilsson单粒子能级(routhian)图。实线、点线、折线和点折线分别代表
表(\(\pi, \alpha\)) = (+, 1/2), (+, -1/2), (-, 1/2)和(-, -1/2)轨道。

\[[p, n](\pi_p, \alpha_p)(\pi_n, \alpha_n) \]

\(^{107}\)Ag (\(\pi = -\))
\([7,1](+ , \pm 1/2)(-, 1)\)
\([7,1](+ , \pm 1/2)(-, 0)\)
Routhian

\[\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \]

\[\begin{align*}
\epsilon_{\frac{1}{2}} & = 0.18, \gamma = 0.0, \epsilon_{\frac{3}{2}} = 0.0 \\
\end{align*} \]

\[\begin{align*}
1g_{\frac{7}{2}}, 2d_{\frac{5}{2}}, 1g_{\frac{7}{2}}, 1g_{\frac{9}{2}} \\
1h_{\frac{11}{2}}, 2d_{\frac{5}{2}} \\
[541] \frac{3}{2}, [413] \frac{5}{2}, [411] \frac{3}{2}, [550] \frac{1}{2}, [422] \frac{3}{2} \\
\end{align*} \]

\[p, n (\pi_p, \alpha_p) (\pi_n, \alpha_n) \]

\[^{107} \text{Ag} (\pi = -) \]

\[[7,1] (+, \pm \frac{1}{2}) (-, 1) \]

\[[7,1'] (+, \pm \frac{1}{2}) (-, 0) \]

\[[7,1'] (+, \pm \frac{1}{2}) (-, 1) \]

转态Nilsson单粒子能级（routhian）图。实线、点线、折线和点折线分别代表
表（\(\pi, \alpha \) = (+, 1/2), (+, - 1/2), (-, 1/2) 和(-, -1/2) 轨道。
Introduction Models Discussions Summary

Routhian

\[\varepsilon_2 = 0.18, \gamma = 0.0, \varepsilon_4 = 0.0 \]

Single-neutron energies \(\varepsilon_i [\text{MeV}] \)

\[
\begin{align*}
\text{56} & \quad 2d_{5/2}^{1/2} \\
\text{58} & \quad 2d_{5/2}^{1/2}, 1g_{7/2}^{3/2} \\
\text{48} & \quad 1g_{9/2}^{3/2}, 2g_{7/2}^{5/2} \\
\text{46} & \quad 1g_{9/2}^{3/2}, 2p_{1/2}^{1/2}, 1f_{5/2}^{3/2}
\end{align*}
\]

Rotational frequency \(h\omega [\text{MeV}] \)

\[[p, n] (\pi_p, \alpha_p) (\pi_n, \alpha_n) \]

\[^{107}\text{Ag} (\pi = -) \]

\[
\begin{align*}
[7,1] & \quad (+, \pm 1/2)(-, 1) \\
[7,1'] & \quad (+, \pm 1/2)(-, 0) \\
[7,3] & \quad (+, \pm 1/2)(-, 1)
\end{align*}
\]

转"动"Nilsson单粒子能级(routhian)图。实线、点线、折线和点折线 分别代
表\((\pi, \alpha) = (+, 1/2), (+, -1/2), (-, 1/2)和(-, -1/2)轨道。

Hai-Liang Ma (马海亮) Do chiral bands really exist in \(^{105,106,107}\text{Ag}\)?
Rotational energies in 105Ag. The energies of rotational liquid drop have been subtracted.

Potential energy surfaces of the $[7,1]$ and $[7,1']$ configurations in 105Ag.

Deformation trajectories of the $[7,1]$ and $[7,1']$ configurations.

Do chiral bands really exist in 105,106,107Ag?
Rotational energies in 106Ag

Potential energy surfaces of the $[7,1]$ and $[7,3]$ configurations in 106Ag.

Deformation trajectories of the $[7,1]$ and $[7,3]$ configurations.

Do chiral bands really exist in 105,106,107Ag?
Rotational energies in 107Ag

Potential energy surfaces of the [7,1] and [7,3] configurations in 107Ag.

Deformation trajectories of the [7,1], [7,1'], and [7,3] configurations.

Hai-Liang Ma (马海亮)
The triaxial deformation is small for the negative parity bands in 105,106,107Ag.

The pairing correlation plays minor role in the negative parity bands of 105,107Ag due to the proton shell gaps and the neutron blocking effect. The spectroscopies of the yrast bands in 106Ag are improved if the pairing correlations are self-consistently taken into account.

The doublet bands in 105Ag can be well explained as the combination of orbitals with different parity and signature within the same configuration. The chirality of the doublet bands is strongly questioned.

In 105,106,107Ag, there are two bands with high moments of inertia which will cross the yrast bands at intermediate spin. They are mostly likely to be build upon $\pi(1g_{9/2})^7 \otimes \nu[(1h_{11/2})^3]$ configuration. Together with the small triaxial deformation predicted by the CNS model, this raises the doubt on the chirality of negative parity bands in 106Ag.
Summary

- The triaxial deformation is small for the negative parity bands in $^{105,106,107}\text{Ag}$.

- The pairing correlation plays minor role in the negative parity bands of $^{105,107}\text{Ag}$ due to the proton shell gaps and the neutron blocking effect. The spectroscopies of the yrast bands in ^{106}Ag are improved if the pairing correlations are self-consistently taken into account.

- The doublet bands in ^{105}Ag can be well explained as the combination of orbitals with different parity and signature within the same configuration. The chirality of the doublet bands is strongly questioned.

- In $^{105,106,107}\text{Ag}$, there are two bands with high moments of inertia which will cross the yrast bands at intermediate spin. They are mostly likely to be build upon $\pi(1g_{9/2})^7 \otimes \nu[(1h_{11/2})^3]$ configuration. Together with the small triaxial deformation predicted by the CNS model, this raises the doubt on the chirality of negative parity bands in ^{106}Ag.
The triaxial deformation is small for the negative parity bands in $^{105,106,107}\text{Ag}$.

The pairing correlation plays minor role in the negative parity bands of $^{105,107}\text{Ag}$ due to the proton shell gaps and the neutron blocking effect. The spectroscopies of the yrast bands in ^{106}Ag are improved if the pairing correlations are self-consistently taken into account.

The doublet bands in ^{105}Ag can be well explained as the combination of orbitals with different parity and signature within the same configuration. The chirality of the doublet bands is strongly questioned.

In $^{105,106,107}\text{Ag}$, there are two bands with high moments of inertia which will cross the yrast bands at intermediate spin. They are mostly likely to be build upon $\pi(1g_{9/2})^7 \otimes \nu[(1h_{11/2})^3]$ configuration. Together with the small triaxial deformation predicted by the CNS model, this raises the doubt on the chirality of negative parity bands in ^{106}Ag.

Hai-Liang Ma (马海亮)
Do chiral bands really exist in $^{105,106,107}\text{Ag}$?
Summary

- The triaxial deformation is small for the negative parity bands in 105,106,107Ag.
- The pairing correlation plays minor role in the negative parity bands of 105,107Ag due to the proton shell gaps and the neutron blocking effect. The spectroscopies of the yrast bands in 106Ag are improved if the pairing correlations are self-consistently taken into account.
- The doublet bands in 105Ag can be well explained as the combination of orbitals with different parity and signature within the same configuration. The chirality of the doublet bands is strongly questioned.
- In 105,106,107Ag, there are two bands with high moments of inertia which will cross the yrast bands at intermediate spin. They are mostly likely to be build upon $\pi(1g_{9/2})^7 \otimes \nu[(1h_{11/2})^3]$ configuration. Together with the small triaxial deformation predicted by the CNS model, this raises the doubt on the chirality of negative parity bands in 106Ag.
Thank you!

Author: Hai-Liang Ma 马海亮

Address: Nuclear Physics Department
China Institute of Atomic Energy
Beijing, 102413, China

Email: mhl624@ciae.ac.cn