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Abstract. Based on the improved quantum molecular-dynamics (ImQMD) model, the incident energy
dependence of dynamic potential barriers is investigated in the entrance channel of fusion reactions. The
height of the dynamic barrier increases with the incident energy at energies around the Coulomb barrier.
The calculated lowest dynamic barrier approaches to the adiabatic barrier, while the highest one goes up
to the sudden potential barrier. To understand the energy dependence of the dynamical barrier we study
the neck formation and shape evolution of the system which causes the dynamic lowering of the barrier.

PACS. 25.70.-z Low and intermediate energy heavy-ion reactions – 24.10.-i Nuclear reaction models and
methods

Being encouraged by the synthesis of superheavy el-
ements (SHEs), the investigation of fusion mechanism at
energies around the Coulomb barrier has recently received
a great attention theoretically and experimentally [1–5].
However, up to now [6] the mechanism of the compound-
nucleus formation in the fusion of heavy nuclei near the
Coulomb barrier is still far from clear. Several models are
proposed to describe the dynamical mechanism of the fu-
sion reaction. One is called dinuclear system (DNS) con-
cept [7,8] in which the fusion happens in the mass asym-
metry coordinate by the transfer of a series of nucleon or
small cluster from a light nucleus to a heavier one at the
touching configuration or the DNS decays by quasifission.
In another type [9–12] the fusion occurs along the radial
coordinate using adiabatic potential energy surface (PES)
obtained either with the liquid-drop model or Strutin-
sky’s macroscopic-microscopic method. The DNS model
assumes a sudden potential energy surface in the radial
coordinate, while the PES behaves adiabatically along the
fusion path in the mass asymmetry coordinate. Although
two sorts of models have been used to explain many exper-
imental evaporation residues cross-sections, their theoret-
ical foundations are still not clear enough, yet. Recently,
a new model [13,14] that includes the time-dependent dy-
namics of the single-particle motion in conjunction with
the macroscopic evolution of the system is proposed, and
it describes that the gradual transition from the diabatic
to the adiabatic potential energy surface leads to fusion or
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quasifission. In this work, the frozen density potential and
the adiabatic potential are also discussed in the entrance
phase of heavy-ion fusion reactions.

In the process of heavy-ion fusion reaction, the interac-
tion of two colliding nuclei consists of an attractive nuclear
potential and a repulsive Coulomb potential. This creates
a Coulomb barrier which the system has to overcome in or-
der to fuse. The interacting potential between nuclei plays
an important role in the description of most heavy-ion
reactions, since the fusion cross-section mainly depends
on the height and position of the Coulomb barrier [15].
However, in the calculations, we find that the Coulomb
barrier is energy dependent. This dependence is also dis-
cussed in the time-dependent Hartree Fock (TDHF) cal-
culations [16]. We try to find the dynamical behavior of
the fusion barrier, the lowest dynamical barrier (which is
very close to the adiabatic barrier) and the upper limit
of the dynamical barrier (which approaches to the frozen
density barrier). In the present work, both the static
barrier based on the frozen density approximation and
the incident-energy–dependent fusion potential barrier are
microscopically calculated using the improved quantum
molecular-dynamics (ImQMD) model [17,18]. The quan-
tum molecular-dynamics (QMD) model being widely used
in intermediate-energy heavy-ion collisions was success-
fully extended to heavy-ion collisions at energies near bar-
rier by making a series improvements [17,18]. The main
improvements introduced are as follows: the surface and
surface symmetry energy terms are introduced in the po-
tential energy density functional in the mean field; a sys-
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tem size-dependent wave packet width is introduced; an
approximate treatment of anti-symmetrization, namely,
the phase space occupation constrain is adopted [19]. The
initial nuclei for projectile and target are sampled accord-
ing to the density, binding energy and root-mean-square
radius of nuclei, which are obtained from calculation of
mean-field theory or experimental data. By using this mi-
croscopic dynamic model, the motions such as shape de-
formations, neck formation and rupture, nucleon transfer
and so on are involved consistently. With the ImQMD
model the fusion dynamics at energies near and above the
barrier has extensively been studied and can reproduce a
series of experimental data [17,18,20,21].

In the ImQMD model, each nucleon is represented by
a coherent state of a Gaussian wave packet. Through a
Wigner transformation, the one-body phase space distri-
bution function for N -distinguishable particles is given by
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Here ri and pi are the centers of the i-th wave packet in
the coordinate and momentum space, respectively. σr rep-
resents the spatial spread of the wave packet. For identical
fermions, the effects of the Pauli principle were discussed
in a broader context by Feldmeier and Schnack [22]. The
approximate treatment of anti-symmetrization is adopted
in the ImQMD model by means of the phase space occupa-
tion constraint method [19]. The density and momentum
distribution functions of a system read
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respectively, where the sum runs over all particles in the
system. And σr and σp satisfy the minimum uncertainty
relation

σr · σp =
h̄

2
. (4)

Considering the fact that for a finite system the nucle-
ons are localized in a finite region corresponding to the size
of the system, the width of the wave packet representing
nucleons in the system should have a relation with the size
of the system. As the same as ref. [17], we adopt a system
size-dependent wave packet width σr = 0.16N1/3 + 0.49,
where N is the number of nucleons bound in the system.

The propagation of nucleons under the self-consis-
tently generated mean field is governed by Hamiltonian
equations of motion:

ṙi =
∂H

∂pi
, ṗi = −

∂H

∂ri
. (5)

The Hamiltonian H consists of the kinetic energy and the
effective interaction potential energy:

H = T + U, (6)

T =
∑

i

p2
i

2m
. (7)

The effective interaction potential energy includes the nu-
clear local interaction potential energy and the Coulomb
interaction potential energy:

U = Uloc + Ucoul. (8)

and

Uloc =

∫

Vlocd
3r. (9)

Here Vloc is the potential energy density.
The potential energy density Vloc in the ImQMD model

reads

Vloc =
α

2
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where the δ = (ρn − ρp)/(ρn + ρp) is the isospin asym-
metry. The first three terms in the above expression can
be obtained from the Skyrme energy density functional
directly. The fifth term is the symmetry potential energy
part which includes both the bulk and the surface symme-
try energy terms. In addition, we introduce an extra small

correction term Vτ = gτ
ρη+1

ρη

0

(named τ term) in the poten-

tial energy functional. Inserting expression (10) into (9),
we obtain the local interaction potential energy omitting
self-energies:
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where
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fsij =
3

2σ2
r

−

(

ri − rj

2σ2
r

)2

, (13)

and ti = 1 and −1 for the proton and the neutron, re-
spectively. rij = |ri − rj | is the relative distance. One
should note that the third term in eq. (11) comes from
both the surface term and the correction to the second
term of eq. (10) (see ref. [17]), and thus g0 is actually
treated as a parameter in this model.
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Table 1. The model parameters IQ1.

α β γ g0 gτ η CS κs ρ0

(MeV) (MeV) (MeV fm2) (MeV) (MeV) (fm2) (fm−3)

−310.0 258.0 7/6 19.8 9.5 2/3 32.0 0.08 0.165

The Coulomb energy can be written as a sum of the
direct and the exchange contribution, and the latter being
taken into account in the Slater approximation [23]

Ucoul =
e2

2

∫

ρp(r)ρp(r
′)

|r − r′|
drdr′ − e2 3

4

(

3

π

)1/3 ∫

ρ4/3
p dr,

(14)
where ρp is the density distribution of protons of the sys-
tem. The collision term and phase space occupation con-
straint can also re-adjust the momenta, but the former
plays a very small role in low-energy heavy-ion collisions
and the latter only happens occasionally.

By this model with the fixed set of parameters IQ1
(see table 1), the properties of the nuclear ground state
(binding energies and the root-mean-square radii) and the
fusion reactions between light and intermediate heavy nu-
clei can be described well [17,18], and the capture cross-
sections of massive nuclear systems and the charge distri-
butions of products in the central collision of very massive
systems, for example, the Ca + Ca and Xe + Sn are also
reproduced very well [18]. Now let us apply the model to
study the dynamic barrier in the heavy-ion fusion reac-
tion of 86Kr + 100Mo head-on collisions. The initial nuclei
of the projectile and target are prepared by the same pro-
cedure as that in refs. [17,18].

The interaction potential Vb(R) between reaction part-
ners can be written as

Vb(R) = E12(R) − E1 − E2. (15)

where R is the center-to-center distance between projec-
tile and target, which is a function of time. E12(R), E1

and E2 are the total energy of the whole system, the en-
ergies of the projectile-like and the target-like part, which
are the integration of time-dependent energy density func-
tional over the whole system, the projectile-like and the
target-like, respectively. The potential energy functional
is given by formula (11) and for the kinetic energy density
functional the Thomas-Fermi approximation is adopted as
mentioned in ref. [24]. The collective kinetic energy has al-
ready been subtracted in expression (15) by using eqs. (6)
and (7). By using the ImQMD model, both the static and
dynamic potential barrier can be calculated. For the cal-
culation of the static Coulomb barriers, the static density
distribution, which is the same as the initial density dis-
tribution of the projectile and target, is adopted, while for
the dynamic Coulomb barrier case the density distribution
of the system changes dynamically due to the interaction
between the reaction partners.

In the fusion process, we can calculate the contour plot
of the density distribution of the system at each time step
for each event by using the ImQMD model. The schematic
picture in fig. 1 illustrates the shape of the system for a

∆

β

β

Fig. 1. The definition of some geometrical quantities related
to the nuclear shape.

typical head-on collision event at the initial period of neck
formation. The shape is determined by the contour map
with the density equal to 0.02/fm3. Some geometry quan-
tities are showed in fig. 1. R denotes the center-to-center
distance between projectile (or projectile-like) and target
(or target-like), ∆ and L denote the neck radius and the
elongation of the total system. The points denoted by in-
dex 1 and 2 are the center of the projectile (or projectile-
like) and of the target (or target-like), respectively. To
explore the dynamic barrier, we must give the specific
definitions of the projectile-like and target-like. When the
neck is formed, we first determine the minimum point O
of the contour plot of the density distribution along the
line through 1 and 2, then we find out the perpendicular
line of CD, which goes through the O point in the plane
xoz. A and B are the cross points of the perpendicular
line and surface of the system. AB is the neck radius of the
system, and its size is denoted by ∆. In order to apply for-
mula (15), the left part on AB is regarded as projectile-like
and the right part on AB is regarded as target-like. The
neck grows up with time evolution. When the neck disap-
pears, the dinuclear system turns into a strongly deformed
mononucleus compound system, and the formula (15) is
not suitable for describing the barrier anymore. At that
time, the distance of the two centers becomes very small
and the potential is far away from the dynamic barrier.
So we do not need to distinguish the projectile-like and
target-like parts.

Now we present the numerical results of the dynamic
(and static) potential barrier for the head-on fusion re-
action of 86Kr + 100Mo in fig. 2. The crossed and dotted
curves denote the proximity potential from ref. [25] and
the static potential. Here the static potential is obtained
with the density frozen approximation. The line with open
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Fig. 2. The potential barrier as a function of the center-to-
center distance between the nuclei for a head-on collision of
86Kr + 100Mo. The dotted and crossed curves are for the static
and proximity potential, respectively. The line with empty
circles is from Stutinsky’s macroscopic-microscopic calcula-
tion based on the two-center shell model. The other six lines
from up to down are for dynamic potentials at incident ener-
gies Ecm = 300.9, 203.9, 183.9, 173.9, 163.9 and 153.9 MeV,
respectively.

circles denotes the adiabatic potential barrier, which is cal-
culated by Strutinsky’s macroscopic-microscopic method
based on the two-center shell model [26,27] in which the
liquid-drop energy plus the shell correction are consid-
ered. The shape parameters used in the calculation of
the adiabatic potential vary with the distance R between
projectile and target and they are determined from the
ImQMD model calculation by the method of the fixed
equidensity surface at ρ = 0.3ρ0. The lines with full tri-
angles, the dashed line, the open square, the thin solid
line, the dot-dashed line and the thick line are all for dy-
namic potentials at incident energies Ecm = 300.9, 203.9,
183.9, 173.9, 163.9 and 153.9MeV, respectively. It is clear
that, in general, Vb(R) is a function of time since the den-
sity distribution of the reaction system changes with time.
Only in a static case, the density distribution of projectile
and target is always assumed to be the same as that at
the initial time. In this case the dynamical effects experi-
enced by fusion partners during the reaction process are
not taken into account. One can see from the figure that
the value of our static barrier is quite close to that of the
well-known proximity potential barrier. However, for the
realistic fusion reactions the density distributions of the
projectile and of the target change with time under the
influence of the mean field, and the shape of the fusion
system and their neck evolve with time. Therefore, the
dynamical potential should strongly depend on the inci-
dent energy (as well as impact parameter) for a certain
reaction system. We define the maximal value of the dy-
namic potential (experienced in the path of fusion) as the
height of the dynamic potential barrier. From the dynamic
calculation one can see that when the incident energy is
quite high, for example, Ecm = 300.9MeV, the dynamical

Fig. 3. The time evolution of the elongation (open circles),
the center-to-center distance of two fragments (open triangles),
and the neck size (full circles) of the composite system in the
fusion reaction 86Kr + 100Mo. Panels (a) and (b) show incident
energies 10MeV above and 20 MeV below the static barrier
(proximity potential barrier), respectively.

barrier reaches Vb(R) = 171.7MeV which is close to the
static barrier Vb(R) = 173.9MeV. With the decrease of
the incident energy, the height of the barrier decreases.
For example, at Ecm = 173.9MeV the dynamical bar-
rier reduces to Vb(R) = 162.7MeV. When the incident
energy goes down to much below the static barrier, for
instance, at Ecm = 153.9MeV, the dynamical barrier fur-
ther decreases to Vb(R) = 151.2MeV which approaches to
the adiabatic static barrier (Vb(R) = 152.0MeV). From
the above studies we can obtain the following conclusions:
1) the dynamical barriers are incident energy dependent,
and the larger the incident energy, the higher the dynamic
barrier. 2) With increasing entrance energy, the dynamic
barrier goes towards the frozen density barrier. 3) One
can find that the lowest dynamic barrier is very close to
the adiabatic potential barrier calculated by Strutinsky’s
macroscopic-microscopic method.

To understand the energy dependence of the dynamic
barrier, we study the neck dynamics and change of shape
for the fusion system 86Kr + 100Mo. In fig. 3 we show
the time evolution of the neck size (line with full cir-
cles), the center-to-center distance between the two frag-
ments (line with empty triangles), and the total length
of the fusing system along the reaction axis (line with
open circles). Panels (a) and (b) show incident ener-
gies 10MeV above and 20MeV below the static barrier
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Fig. 4. The fusion path for a head-on collision of 86Kr + 100Mo at an energy 10MeV below the Coulomb barrier. Insets (1a),
(2a), (3a) are the contour plots of the density distributions at different times: t = 150, 200, 300 fm/c, respectively, and (1b),
(2b), (3b) are the corresponding single-particle potentials at different times: t = 150, 200, 300 fm/c, respectively.

(proximity potential barrier), respectively. From fig. 3 one
can see that for the case of the incident energy much be-
low the static barrier, the neck formation seems to be
later than that of the energy above the static barrier, and
in the former case the neck size starts to increase from
a time of about 220 fm/c and then decreases, even van-
ishes, then increases again. The neck size oscillates during
the time from 220 fm/c to 420 fm/c. This vibration of the
neck size makes the fusing system stay at touching con-
figuration for a longer period of time, which results in the
fact that the center-to-center distance between the two
fragments almost stops to decrease with time in this pe-
riod and the fusing system has enough time to re-adjust
the shape of the system which is energetically favorable
and is close to the adiabatic case. In this way, the total
length of the fusion system is larger than that of the en-
ergy above the static barrier. Therefore, we obtain that
the dynamic barrier at Ec.m. = 153.9MeV is lower than
that at Ec.m. = 183.9MeV.

For further investigating the fusion dynamics, we pay
a special attention to study the configuration along the
fusion path in the fusion potential energy surface. As an
example, in fig. 4 we illustrate one typical fusion event of
the head-on fusion reaction of 86Kr +100 Mo at an energy
10MeV below the barrier. In the figure we plot the dy-
namic barrier Vb as a function of the center-to-center dis-
tance. Simultaneously, in the insets we plot the contour
plots of density distributions as well as the corresponding
single-particle potentials at 3 typical times, i.e., before, at,
and after reaching the highest value of the dynamic bar-
rier along the fusion path. The single-particle potential is
calculated by

Vsp(r) =

∫

ρ(r′)V (r − r
′)dr′, (16)

with ρ(r) being the density distribution of the system
and V (r − r

′) the effective nucleon-nucleon interaction.
Insets (1a) and (1b) are the contour plots of the density
distribution as well as the corresponding single-particle
potential at point 1 of the fusion path. One can see from
these two figures that at this point the fusion partners are
not in touch (see inset (1a)), and there is a high enough
inner potential barrier which prevents nucleons from mov-
ing from the projectile to the target, or viceversa (see
inset (1b)). At the time, corresponding to the point 2,
the dynamic barrier reaches a maximal value. The con-
tour plot of the density distribution (inset (2a)) shows
that the fusion partners are at a touching configuration,
a neck starts to grow, and following this, the inner po-
tential barrier in the potential well is reduced, allowing
a few nucleons to move from the projectile to the tar-
get, or viceversa (inset (2b)). At the time corresponding
to point 3, the dynamical barrier is reduced considerably.
Insets (3a) and (3b) show that the neck develops consider-
ably at this moment and, consequently, the inner potential
barrier in the potential well is reduced substantially, and
the nucleon transfer between the projectile and the tar-
get becomes much easier than before. This means that
a pre-compound nucleus starts to be formed. From this
study we have learned how the dynamical fusion barrier
is correlated with the development of the configuration
of fusion partner along the fusion path. Associating the
single-particle potentials obtained at different stages of
fusion with the two-center shell model [26], we can study
the time evolution of the single-particle states of the fu-
sion system in the configuration space of single-particle
orbits along the fusion path, by which one can study the
collectivization of nucleons [1] quantitatively. This kind of
work is in progress.
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In summary, within the improved quantum molecular-
dynamics model we have studied the incident-energy–
dependent potential barrier of fusion systems. In our ap-
proach the fusion barrier based on the initial density of
the system and the frozen density approximation is called
the static barrier. The real dynamical barrier encountered
in the fusion process strongly depends on the incident en-
ergy. The height of dynamical barrier decreases with the
decrease of the incident energy, and finally approaches a
value which is close to the adiabatic barrier calculated by
Strutinsky’s macroscopic-microscopic method. With in-
creasing incident energy the dynamic barrier increases and
approaches to the static barrier. We also find that the
neck formation and shape evolution of the fusion process
mainly cause the lowering of the dynamic barrier. In the
ImQMD model both the nuclear mean field and collision
term allowing for nucleon-nucleon scattering are treated
properly, other effects (i.e., shell and parity effects, etc.)
are completely ignored in our calculation. On the other
hand, the anti-symmetrization between the nucleons plays
a very important role in the collision. It is approximately
treated in the ImQMD model by the phase space occupa-
tion constraint method, which partly made up for its lack
of fermionic nature. Due to the approximate treatment
of the anti-symmetrization and ignoring the shell effects,
the ImQMD model can only provide an approximate in-
ternuclear potential in fusion reactions. To obtain a more
accurate dynamic potential barrier, one needs to improve
the model further.
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